Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Oct;85(8):1157–1161. doi: 10.1054/bjoc.2001.2086

Chromosomal radiosensitivity in G2-phase lymphocytes identifies breast cancer patients with distinctive tumour characteristics

A C Riches 1, P E Bryant 1, C M Steel 1, A Gleig 1, A J Robertson 2, P E Preece 3, A M Thompson 3
PMCID: PMC2375149  PMID: 11710829

Abstract

A substantial proportion of women with breast cancer exhibit an abnormally high radiosensitivity as measured by the frequency of chromatid breaks induced in G2-phase, PHA stimulated lymphocytes. Chromatid break frequencies were compared for a cohort of previously untreated sporadic breast cancer patients and hospital outpatient controls. In the breast cancer group 46% showed high radiosensitivity compared to 14% of controls (P< 0.001). Comparison of those breast cancer patients with a high G2radiosensitivity (G2RS) versus those with a low G2RS showed no difference in menopausal status or age but the high G2RS group had on average a lower score on the Nottingham Prognostic Index. Predicted survival in the high G2RS group at 15 years was 55% compared to 36% for the low G2RS group. Furthermore, 81% of tumours from the high G2RS were oestrogen receptor positive compared to 45% from the low G2RS group. Thus high G2RS identifies a sub-population of patients with distinctive tumour characteristics and with a predicted improved prognosis as compared with those in the low G2RS group. Our findings imply that besides influencing risk of breast cancer the genetic factors determining G2radiosensitivity also influence the tumour characteristics and prognosis in these patients. © 2001 Cancer Research Campaign  http://www.bjcancer.com

Keywords: breast cancer, chromosomal radiosensitivity, G2-phase

Full Text

The Full Text of this article is available as a PDF (66.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balslev I., Axelsson C. K., Zedeler K., Rasmussen B. B., Carstensen B., Mouridsen H. T. The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res Treat. 1994;32(3):281–290. doi: 10.1007/BF00666005. [DOI] [PubMed] [Google Scholar]
  2. Bryant P. E. The signal model: a possible explanation for the conversion of DNA double-strand breaks into chromatid breaks. Int J Radiat Biol. 1998 Mar;73(3):243–251. doi: 10.1080/095530098142338. [DOI] [PubMed] [Google Scholar]
  3. Chen P. L., Sellers T. A., Rich S. S., Potter J. D., Folsom A. R. Segregation analysis of breast cancer in a population-based sample of postmenopausal probands: The Iowa Women's Health Study. Genet Epidemiol. 1995;12(4):401–415. doi: 10.1002/gepi.1370120408. [DOI] [PubMed] [Google Scholar]
  4. Galea M. H., Blamey R. W., Elston C. E., Ellis I. O. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat. 1992;22(3):207–219. doi: 10.1007/BF01840834. [DOI] [PubMed] [Google Scholar]
  5. Kinzler K. W., Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997 Apr 24;386(6627):761–763. doi: 10.1038/386761a0. [DOI] [PubMed] [Google Scholar]
  6. Lakhani S. R., Gusterson B. A., Jacquemier J., Sloane J. P., Anderson T. J., van de Vijver M. J., Venter D., Freeman A., Antoniou A., McGuffog L. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res. 2000 Mar;6(3):782–789. [PubMed] [Google Scholar]
  7. Lakhani S. R., Jacquemier J., Sloane J. P., Gusterson B. A., Anderson T. J., van de Vijver M. J., Farid L. M., Venter D., Antoniou A., Storfer-Isser A. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998 Aug 5;90(15):1138–1145. doi: 10.1093/jnci/90.15.1138. [DOI] [PubMed] [Google Scholar]
  8. Parshad R., Price F. M., Bohr V. A., Cowans K. H., Zujewski J. A., Sanford K. K. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer. 1996 Jul;74(1):1–5. doi: 10.1038/bjc.1996.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Patel R. K., Trivedi A. H., Arora D. C., Bhatavdekar J. M., Patel D. D. DNA repair proficiency in breast cancer patients and their first-degree relatives. Int J Cancer. 1997 Sep 26;73(1):20–24. doi: 10.1002/(sici)1097-0215(19970926)73:1<20::aid-ijc4>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  10. Peto J., Collins N., Barfoot R., Seal S., Warren W., Rahman N., Easton D. F., Evans C., Deacon J., Stratton M. R. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999 Jun 2;91(11):943–949. doi: 10.1093/jnci/91.11.943. [DOI] [PubMed] [Google Scholar]
  11. Roberts S. A., Spreadborough A. R., Bulman B., Barber J. B., Evans D. G., Scott D. Heritability of cellular radiosensitivity: a marker of low-penetrance predisposition genes in breast cancer? Am J Hum Genet. 1999 Sep;65(3):784–794. doi: 10.1086/302544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rogers-Bald M., Sargent R. G., Bryant P. E. Production of chromatid breaks by single dsb: evidence supporting the signal model. Int J Radiat Biol. 2000 Jan;76(1):23–29. doi: 10.1080/095530000138970. [DOI] [PubMed] [Google Scholar]
  13. Sanford K. K., Parshad R., Gantt R., Tarone R. E., Jones G. M., Price F. M. Factors affecting and significance of G2 chromatin radiosensitivity in predisposition to cancer. Int J Radiat Biol. 1989 Jun;55(6):963–981. doi: 10.1080/09553008914551001. [DOI] [PubMed] [Google Scholar]
  14. Scott D., Barber J. B., Levine E. L., Burrill W., Roberts S. A. Radiation-induced micronucleus induction in lymphocytes identifies a high frequency of radiosensitive cases among breast cancer patients: a test for predisposition? Br J Cancer. 1998 Feb;77(4):614–620. doi: 10.1038/bjc.1998.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scott D., Barber J. B., Spreadborough A. R., Burrill W., Roberts S. A. Increased chromosomal radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiat Biol. 1999 Jan;75(1):1–10. doi: 10.1080/095530099140744. [DOI] [PubMed] [Google Scholar]
  16. Scott D., Spreadborough A. R., Jones L. A., Roberts S. A., Moore C. J. Chromosomal radiosensitivity in G2-phase lymphocytes as an indicator of cancer predisposition. Radiat Res. 1996 Jan;145(1):3–16. [PubMed] [Google Scholar]
  17. Scott D., Spreadborough A., Levine E., Roberts S. A. Genetic predisposition in breast cancer. Lancet. 1994 Nov 19;344(8934):1444–1444. doi: 10.1016/s0140-6736(94)90615-7. [DOI] [PubMed] [Google Scholar]
  18. Teare M. D., Wallace S. A., Harris M., Howell A., Birch J. M. Cancer experience in the relatives of an unselected series of breast cancer patients. Br J Cancer. 1994 Jul;70(1):102–111. doi: 10.1038/bjc.1994.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Terzoudi G. I., Jung T., Hain J., Vrouvas J., Margaritis K., Donta-Bakoyianni C., Makropoulos V., Angelakis P., Pantelias G. E. Increased G2 chromosomal radiosensitivity in cancer patients: the role of cdk1/cyclin-B activity level in the mechanisms involved. Int J Radiat Biol. 2000 May;76(5):607–615. doi: 10.1080/095530000138268. [DOI] [PubMed] [Google Scholar]
  20. Wang J. Y. Cancer. New link in a web of human genes. Nature. 2000 May 25;405(6785):404–405. doi: 10.1038/35013171. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES