Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Oct;85(8):1094–1098. doi: 10.1054/bjoc.2001.2054

Heparan sulfate proteoglycans and cancer

F H Blackhall 1, C L R Merry 1, E J Davies 1, G C Jayson 1
PMCID: PMC2375159  PMID: 11710818

Abstract

Heparan sulfate proteoglycans (HSPGs) are widely distributed in mammalian tissues and involved in a number of processes related to malignancy. They are composed of a core protein to which chains of the glycosaminoglycan, heparan sulfate (HS), are attached. The existence of various classes of core protein, in addition to highly polymorphic HS chains, creates a superfamily of macromolecules with considerable diversity of structure and function. HSPGs interact with many proteins including growth factors, chemokines and structural proteins of the extracellular matrix to influence cell growth, differentiation, and the cellular response to the environment. The recent identification of two inherited syndromes that are associated with an increased cancer risk, and caused by mutations in HSPG-related genes, has intensified interest in these molecules. This review describes our current understanding of HSPGs in cancer and highlights new possibilities for therapeutic control. © 2001 Cancer Research Campaign  http://www.bjcancer.com

Keywords: heparan sulfate, proteoglycans, cancer

Full Text

The Full Text of this article is available as a PDF (77.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. M., Reichsman F., Hinkes M. T., Lincecum J., Becker K. A., Cumberledge S., Bernfield M. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet. 2000 Jul;25(3):329–332. doi: 10.1038/77108. [DOI] [PubMed] [Google Scholar]
  2. Arai T., Akiyama Y., Nagasaki H., Murase N., Okabe S., Ikeuchi T., Saito K., Iwai T., Yuasa Y. EXTL3/EXTR1 alterations in colorectal cancer cell lines. Int J Oncol. 1999 Nov;15(5):915–919. doi: 10.3892/ijo.15.5.915. [DOI] [PubMed] [Google Scholar]
  3. Aviezer D., Iozzo R. V., Noonan D. M., Yayon A. Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol Cell Biol. 1997 Apr;17(4):1938–1946. doi: 10.1128/mcb.17.4.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  5. Chang Z., Meyer K., Rapraeger A. C., Friedl A. Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J. 2000 Jan;14(1):137–144. doi: 10.1096/fasebj.14.1.137. [DOI] [PubMed] [Google Scholar]
  6. Choi C., Cho S., Horikawa I., Berchuck A., Wang N., Cedrone E., Jhung S. W., Lee J. B., Kerr J., Chenevix-Trench G. Loss of heterozygosity at chromosome segment Xq25-26.1 in advanced human ovarian carcinomas. Genes Chromosomes Cancer. 1997 Nov;20(3):234–242. [PubMed] [Google Scholar]
  7. Conejo J. R., Kleeff J., Koliopanos A., Matsuda K., Zhu Z. W., Goecke H., Bicheng N., Zimmermann A., Korc M., Friess H. Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer. 2000 Oct 1;88(1):12–20. doi: 10.1002/1097-0215(20001001)88:1<12::aid-ijc3>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  8. Dhodapkar M. V., Abe E., Theus A., Lacy M., Langford J. K., Barlogie B., Sanderson R. D. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood. 1998 Apr 15;91(8):2679–2688. [PubMed] [Google Scholar]
  9. Gonzalez A. D., Kaya M., Shi W., Song H., Testa J. R., Penn L. Z., Filmus J. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol. 1998 Jun 15;141(6):1407–1414. doi: 10.1083/jcb.141.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hecht J. T., Hogue D., Strong L. C., Hansen M. F., Blanton S. H., Wagner M. Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet. 1995 May;56(5):1125–1131. [PMC free article] [PubMed] [Google Scholar]
  11. Hennekam R. C. Hereditary multiple exostoses. J Med Genet. 1991 Apr;28(4):262–266. doi: 10.1136/jmg.28.4.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jayson G. C., Lyon M., Paraskeva C., Turnbull J. E., Deakin J. A., Gallagher J. T. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem. 1998 Jan 2;273(1):51–57. doi: 10.1074/jbc.273.1.51. [DOI] [PubMed] [Google Scholar]
  13. Kitagawa H., Shimakawa H., Sugahara K. The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J Biol Chem. 1999 May 14;274(20):13933–13937. doi: 10.1074/jbc.274.20.13933. [DOI] [PubMed] [Google Scholar]
  14. Kleeff J., Ishiwata T., Kumbasar A., Friess H., Büchler M. W., Lander A. D., Korc M. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 1998 Nov 1;102(9):1662–1673. doi: 10.1172/JCI4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kumar-Singh S., Jacobs W., Dhaene K., Weyn B., Bogers J., Weyler J., Van Marck E. Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J Pathol. 1998 Nov;186(3):300–305. doi: 10.1002/(SICI)1096-9896(1998110)186:3<300::AID-PATH180>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  16. Lin H., Huber R., Schlessinger D., Morin P. J. Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res. 1999 Feb 15;59(4):807–810. [PubMed] [Google Scholar]
  17. Lind T., Tufaro F., McCormick C., Lindahl U., Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998 Oct 9;273(41):26265–26268. doi: 10.1074/jbc.273.41.26265. [DOI] [PubMed] [Google Scholar]
  18. Lindahl U., Kusche-Gullberg M., Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem. 1998 Sep 25;273(39):24979–24982. doi: 10.1074/jbc.273.39.24979. [DOI] [PubMed] [Google Scholar]
  19. Matsumoto A., Ono M., Fujimoto Y., Gallo R. L., Bernfield M., Kohgo Y. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer. 1997 Oct 21;74(5):482–491. doi: 10.1002/(sici)1097-0215(19971021)74:5<482::aid-ijc2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  20. McCormick C., Leduc Y., Martindale D., Mattison K., Esford L. E., Dyer A. P., Tufaro F. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998 Jun;19(2):158–161. doi: 10.1038/514. [DOI] [PubMed] [Google Scholar]
  21. McKenzie E., Tyson K., Stamps A., Smith P., Turner P., Barry R., Hircock M., Patel S., Barry E., Stubberfield C. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun. 2000 Oct 5;276(3):1170–1177. doi: 10.1006/bbrc.2000.3586. [DOI] [PubMed] [Google Scholar]
  22. Merry C. L., Lyon M., Deakin J. A., Hopwood J. J., Gallagher J. T. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J Biol Chem. 1999 Jun 25;274(26):18455–18462. doi: 10.1074/jbc.274.26.18455. [DOI] [PubMed] [Google Scholar]
  23. Murthy S. S., Shen T., De Rienzo A., Lee W. C., Ferriola P. C., Jhanwar S. C., Mossman B. T., Filmus J., Testa J. R. Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene. 2000 Jan 20;19(3):410–416. doi: 10.1038/sj.onc.1203322. [DOI] [PubMed] [Google Scholar]
  24. Nackaerts K., Verbeken E., Deneffe G., Vanderschueren B., Demedts M., David G. Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer. 1997 Jun 20;74(3):335–345. doi: 10.1002/(sici)1097-0215(19970620)74:3<335::aid-ijc18>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  25. Paine-Saunders S., Viviano B. L., Zupicich J., Skarnes W. C., Saunders S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol. 2000 Sep 1;225(1):179–187. doi: 10.1006/dbio.2000.9831. [DOI] [PubMed] [Google Scholar]
  26. Pilia G., Hughes-Benzie R. M., MacKenzie A., Baybayan P., Chen E. Y., Huber R., Neri G., Cao A., Forabosco A., Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996 Mar;12(3):241–247. doi: 10.1038/ng0396-241. [DOI] [PubMed] [Google Scholar]
  27. Pye D. A., Vives R. R., Turnbull J. E., Hyde P., Gallagher J. T. Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem. 1998 Sep 4;273(36):22936–22942. doi: 10.1074/jbc.273.36.22936. [DOI] [PubMed] [Google Scholar]
  28. Raskind W. H., Conrad E. U., Chansky H., Matsushita M. Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet. 1995 May;56(5):1132–1139. [PMC free article] [PubMed] [Google Scholar]
  29. Seidel C., Sundan A., Hjorth M., Turesson I., Dahl I. M., Abildgaard N., Waage A., Borset M. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood. 2000 Jan 15;95(2):388–392. [PubMed] [Google Scholar]
  30. Selleck S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 2000 May;16(5):206–212. doi: 10.1016/s0168-9525(00)01997-1. [DOI] [PubMed] [Google Scholar]
  31. Sharma B., Handler M., Eichstetter I., Whitelock J. M., Nugent M. A., Iozzo R. V. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest. 1998 Oct 15;102(8):1599–1608. doi: 10.1172/JCI3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stanley M. J., Stanley M. W., Sanderson R. D., Zera R. Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am J Clin Pathol. 1999 Sep;112(3):377–383. doi: 10.1093/ajcp/112.3.377. [DOI] [PubMed] [Google Scholar]
  33. Stickens D., Brown D., Evans G. A. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev Dyn. 2000 Jul;218(3):452–464. doi: 10.1002/1097-0177(200007)218:3<452::AID-DVDY1000>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  34. Veugelers M., Cat B. D., Muyldermans S. Y., Reekmans G., Delande N., Frints S., Legius E., Fryns J. P., Schrander-Stumpel C., Weidle B. Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson-Golabi-Behmel syndrome: identification of loss-of-function mutations in the GPC3 gene. Hum Mol Genet. 2000 May 22;9(9):1321–1328. doi: 10.1093/hmg/9.9.1321. [DOI] [PubMed] [Google Scholar]
  35. Vlodavsky I., Friedmann Y., Elkin M., Aingorn H., Atzmon R., Ishai-Michaeli R., Bitan M., Pappo O., Peretz T., Michal I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med. 1999 Jul;5(7):793–802. doi: 10.1038/10518. [DOI] [PubMed] [Google Scholar]
  36. van Kuppevelt T. H., Dennissen M. A., van Venrooij W. J., Hoet R. M., Veerkamp J. H. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem. 1998 May 22;273(21):12960–12966. doi: 10.1074/jbc.273.21.12960. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES