Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Oct;85(8):1175–1184. doi: 10.1054/bjoc.2001.2044

Cross-talk between signalling pathways and the multidrug resistant protein MDR-1

S Ding 1, M Chamberlain 1,2, A McLaren 1,2, L-b Goh 1, I Duncan 3, C R Wolf 1,2
PMCID: PMC2375166  PMID: 11710832

Abstract

The multidrug resistant protein MDR-1 has been associated with the resistance to a wide range of anti-cancer drugs. Taxol is a substrate for this transporter system and is used in the treatment of a wide range of human malignancies including lung, breast and ovarian cancer. We have generated a series of ovarian cell lines resistant to this compound, all of which overexpress MDR-1 through gene amplification. We present novel evidence that a constitutive activation of the ERK1/2 MAP kinase pathway was also observed although the level of active JNK and p38 remained unchanged. Inhibition of the ERK1/2 MAP kinase pathway using UO126 or PD098059 re-sensitised the Taxol resistant cells at least 20-fold. Importantly, when Mdr-1 cDNA was stably expressed in the wild-type cell line to generate a highly Taxol-resistant sub-line, 1847/MDR5, ERK1/2 MAP kinases again became activated. This result demonstrated that the increased activity of the signalling pathway in the Taxol-resistant lines was directly attributable to MDR-1 overexpression and was not due to the effects of Taxol itself. Additionally, we demonstrated that inhibition of the P13K pathway with LY294002 sensitised the MDR-1-expressing 1847/TX0.5 cells and 1847/MDR5 cells at least 10-fold but had no effect in the wild-type cells. This finding suggests a possible role for this pathway, also, in the generation of resistance to Taxol. © 2001 Cancer Research Campaign  http://www.bjcancer.com

Keywords: MAP kinase, MDR-1, drug resistance, ovarian cancer, Taxol

Full Text

The Full Text of this article is available as a PDF (184.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  2. Blagosklonny M. V., Chuman Y., Bergan R. C., Fojo T. Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells. Leukemia. 1999 Jul;13(7):1028–1036. doi: 10.1038/sj.leu.2401449. [DOI] [PubMed] [Google Scholar]
  3. Bosch I., Croop J. P-glycoprotein multidrug resistance and cancer. Biochim Biophys Acta. 1996 Oct 9;1288(2):F37–F54. doi: 10.1016/0304-419x(96)00022-4. [DOI] [PubMed] [Google Scholar]
  4. Castro A. F., Horton J. K., Vanoye C. G., Altenberg G. A. Mechanism of inhibition of P-glycoprotein-mediated drug transport by protein kinase C blockers. Biochem Pharmacol. 1999 Dec 1;58(11):1723–1733. doi: 10.1016/s0006-2952(99)00288-9. [DOI] [PubMed] [Google Scholar]
  5. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dent P., Jarvis W. D., Birrer M. J., Fisher P. B., Schmidt-Ullrich R. K., Grant S. The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia. 1998 Dec;12(12):1843–1850. doi: 10.1038/sj.leu.2401222. [DOI] [PubMed] [Google Scholar]
  7. Ding S., Yao D., Burchell B., Wolf C. R., Friedberg T. High levels of recombinant CYP3A4 expression in Chinese hamster ovary cells are modulated by coexpressed human P450 reductase and hemin supplementation. Arch Biochem Biophys. 1997 Dec 15;348(2):403–410. doi: 10.1006/abbi.1997.0405. [DOI] [PubMed] [Google Scholar]
  8. Emanuel S. L., Chamberlin H. A., Cohen D. Antimitotic drugs cause increased tumorigenicity of multidrug resistant cells. Int J Oncol. 1999 Mar;14(3):487–494. doi: 10.3892/ijo.14.3.487. [DOI] [PubMed] [Google Scholar]
  9. Eva A., Robbins K. C., Andersen P. R., Srinivasan A., Tronick S. R., Reddy E. P., Ellmore N. W., Galen A. T., Lautenberger J. A., Papas T. S. Cellular genes analogous to retroviral onc genes are transcribed in human tumour cells. Nature. 1982 Jan 14;295(5845):116–119. doi: 10.1038/295116a0. [DOI] [PubMed] [Google Scholar]
  10. Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., Van Dyk D. E., Pitts W. J., Earl R. A., Hobbs F. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998 Jul 17;273(29):18623–18632. doi: 10.1074/jbc.273.29.18623. [DOI] [PubMed] [Google Scholar]
  11. Franke T. F., Kaplan D. R., Cantley L. C. PI3K: downstream AKTion blocks apoptosis. Cell. 1997 Feb 21;88(4):435–437. doi: 10.1016/s0092-8674(00)81883-8. [DOI] [PubMed] [Google Scholar]
  12. Hayakawa J., Ohmichi M., Kurachi H., Ikegami H., Kimura A., Matsuoka T., Jikihara H., Mercola D., Murata Y. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J Biol Chem. 1999 Oct 29;274(44):31648–31654. doi: 10.1074/jbc.274.44.31648. [DOI] [PubMed] [Google Scholar]
  13. Hoshino R., Chatani Y., Yamori T., Tsuruo T., Oka H., Yoshida O., Shimada Y., Ari-i S., Wada H., Fujimoto J. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999 Jan 21;18(3):813–822. doi: 10.1038/sj.onc.1202367. [DOI] [PubMed] [Google Scholar]
  14. Johnstone R. W., Cretney E., Smyth M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999 Feb 1;93(3):1075–1085. [PubMed] [Google Scholar]
  15. Kauffmann-Zeh A., Rodriguez-Viciana P., Ulrich E., Gilbert C., Coffer P., Downward J., Evan G. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature. 1997 Feb 6;385(6616):544–548. doi: 10.1038/385544a0. [DOI] [PubMed] [Google Scholar]
  16. Keyse S. M. An emerging family of dual specificity MAP kinase phosphatases. Biochim Biophys Acta. 1995 Mar 16;1265(2-3):152–160. doi: 10.1016/0167-4889(94)00211-v. [DOI] [PubMed] [Google Scholar]
  17. Kim M. S., So H. S., Park J. S., Lee K. M., Moon B. S., Lee H. S., Kim T. Y., Moon S. K., Park R. Hwansodan protects PC12 cells against serum-deprivation-induced apoptosis via a mechanism involving Ras and mitogen-activated protein (MAP) kinase pathway. Gen Pharmacol. 2000 Apr;34(4):227–235. doi: 10.1016/s0306-3623(00)00065-3. [DOI] [PubMed] [Google Scholar]
  18. Kinloch R. A., Treherne J. M., Furness L. M., Hajimohamadreza I. The pharmacology of apoptosis. Trends Pharmacol Sci. 1999 Jan;20(1):35–42. doi: 10.1016/s0165-6147(98)01277-2. [DOI] [PubMed] [Google Scholar]
  19. Kioka N., Tsubota J., Kakehi Y., Komano T., Gottesman M. M., Pastan I., Ueda K. P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly185 with an altered pattern of multidrug resistance. Biochem Biophys Res Commun. 1989 Jul 14;162(1):224–231. doi: 10.1016/0006-291x(89)91985-2. [DOI] [PubMed] [Google Scholar]
  20. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  21. Ling Y. H., Yang Y., Tornos C., Singh B., Perez-Soler R. Paclitaxel-induced apoptosis is associated with expression and activation of c-Mos gene product in human ovarian carcinoma SKOV3 cells. Cancer Res. 1998 Aug 15;58(16):3633–3640. [PubMed] [Google Scholar]
  22. MacKeigan J. P., Collins T. S., Ting J. P. MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem. 2000 Dec 15;275(50):38953–38956. doi: 10.1074/jbc.C000684200. [DOI] [PubMed] [Google Scholar]
  23. Mansour S. J., Matten W. T., Hermann A. S., Candia J. M., Rong S., Fukasawa K., Vande Woude G. F., Ahn N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994 Aug 12;265(5174):966–970. doi: 10.1126/science.8052857. [DOI] [PubMed] [Google Scholar]
  24. Misra S., Ujházy P., Varticovski L., Arias I. M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5814–5819. doi: 10.1073/pnas.96.10.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  26. Parekh H., Wiesen K., Simpkins H. Acquisition of taxol resistance via P-glycoprotein- and non-P-glycoprotein-mediated mechanisms in human ovarian carcinoma cells. Biochem Pharmacol. 1997 Feb 21;53(4):461–470. doi: 10.1016/s0006-2952(97)83383-7. [DOI] [PubMed] [Google Scholar]
  27. Plo I., Bettaïeb A., Payrastre B., Mansat-De Mas V., Bordier C., Rousse A., Kowalski-Chauvel A., Laurent G., Lautier D. The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines. FEBS Lett. 1999 Jun 11;452(3):150–154. doi: 10.1016/s0014-5793(99)00631-6. [DOI] [PubMed] [Google Scholar]
  28. Salh B. S., Martens J., Hundal R. S., Yoganathan N., Charest D., Mui A., Gómez-Muñoz A. PD98059 attenuates hydrogen peroxide-induced cell death through inhibition of Jun N-Terminal Kinase in HT29 cells. Mol Cell Biol Res Commun. 2000 Sep;4(3):158–165. doi: 10.1006/mcbr.2001.0271. [DOI] [PubMed] [Google Scholar]
  29. Sandor V., Fojo T., Bates S. E. Future perspectives for the development of P-glycoprotein modulators. Drug Resist Updat. 1998;1(3):190–200. doi: 10.1016/s1368-7646(98)80039-3. [DOI] [PubMed] [Google Scholar]
  30. Sarris A. H., Younes A., McLaughlin P., Moore D., Hagemeister F., Swan F., Rodriguez M. A., Romaguera J., North L., Mansfield P. Cyclosporin A does not reverse clinical resistance to paclitaxel in patients with relapsed non-Hodgkin's lymphoma. J Clin Oncol. 1996 Jan;14(1):233–239. doi: 10.1200/JCO.1996.14.1.233. [DOI] [PubMed] [Google Scholar]
  31. Scheid M. P., Woodgett J. R. Protein kinases: six degrees of separation? Curr Biol. 2000 Mar 9;10(5):R191–R194. doi: 10.1016/s0960-9822(00)00349-3. [DOI] [PubMed] [Google Scholar]
  32. Schulte T. W., Blagosklonny M. V., Romanova L., Mushinski J. F., Monia B. P., Johnston J. F., Nguyen P., Trepel J., Neckers L. M. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol. 1996 Oct;16(10):5839–5845. doi: 10.1128/mcb.16.10.5839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sebolt-Leopold J. S., Dudley D. T., Herrera R., Van Becelaere K., Wiland A., Gowan R. C., Tecle H., Barrett S. D., Bridges A., Przybranowski S. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999 Jul;5(7):810–816. doi: 10.1038/10533. [DOI] [PubMed] [Google Scholar]
  34. Shayesteh L., Lu Y., Kuo W. L., Baldocchi R., Godfrey T., Collins C., Pinkel D., Powell B., Mills G. B., Gray J. W. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999 Jan;21(1):99–102. doi: 10.1038/5042. [DOI] [PubMed] [Google Scholar]
  35. Smith C. D., Zilfou J. T. Circumvention of P-glycoprotein-mediated multiple drug resistance by phosphorylation modulators is independent of protein kinases. J Biol Chem. 1995 Nov 24;270(47):28145–28152. doi: 10.1074/jbc.270.47.28145. [DOI] [PubMed] [Google Scholar]
  36. Smyth M. J., Krasovskis E., Sutton V. R., Johnstone R. W. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7024–7029. doi: 10.1073/pnas.95.12.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  38. Wang X., Martindale J. L., Liu Y., Holbrook N. J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J. 1998 Jul 15;333(Pt 2):291–300. doi: 10.1042/bj3330291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wennström S., Downward J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol. 1999 Jun;19(6):4279–4288. doi: 10.1128/mcb.19.6.4279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wittstein I. S., Qiu W., Ziegelstein R. C., Hu Q., Kass D. A. Opposite effects of pressurized steady versus pulsatile perfusion on vascular endothelial cell cytosolic pH: role of tyrosine kinase and mitogen-activated protein kinase signaling. Circ Res. 2000 Jun 23;86(12):1230–1236. doi: 10.1161/01.res.86.12.1230. [DOI] [PubMed] [Google Scholar]
  41. Yao M., Shuin T., Misaki H., Kubota Y. Enhanced expression of c-myc and epidermal growth factor receptor (C-erbB-1) genes in primary human renal cancer. Cancer Res. 1988 Dec 1;48(23):6753–6757. [PubMed] [Google Scholar]
  42. Yuan Z. Q., Sun M., Feldman R. I., Wang G., Ma X., Jiang C., Coppola D., Nicosia S. V., Cheng J. Q. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000 May 4;19(19):2324–2330. doi: 10.1038/sj.onc.1203598. [DOI] [PubMed] [Google Scholar]
  43. Zuber J., Tchernitsa O. I., Hinzmann B., Schmitz A. C., Grips M., Hellriegel M., Sers C., Rosenthal A., Schäfer R. A genome-wide survey of RAS transformation targets. Nat Genet. 2000 Feb;24(2):144–152. doi: 10.1038/72799. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES