Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Sep 1;85(9):1387–1395. doi: 10.1054/bjoc.2001.2078

Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67 kD laminin receptor

I Vande Broek 1, K Vanderkerken 1, C De Greef 1, K Asosingh 1, N Straetmans 2, B Van Camp 1, I Van Riet 1
PMCID: PMC2375239  PMID: 11720479

Abstract

The 67 kD laminin receptor (67LR) binds laminin-1 (LN), major component of the basement membrane, with high affinity. In this study, we demonstrated that human multiple myeloma cell lines (HMCL) and murine 5T2MM cells express 67LR. CD38bright+ plasma cells in fresh multiple myeloma (MM) bone marrow (BM) samples showed weaker 67LR expression, but expression increased after direct exposure to a BM endothelial cell line (4LHBMEC). LN stimulated the in vitro migration of 3 HMCL (MM5.1, U266 and MMS.1), primary MM cells and the murine 5T2MM cells. 67LR has been shown to mediate the actions of LN through binding to CDPGYIGSR, a 9 amino acid sequence from the B1 chain of LN. MM cell migration was partially blocked by peptide 11, a synthetic nonapeptide derived from this amino sequence and also by a blocking antiserum against 67LR. Co-injection of peptide 11 with 5T2MM cells in a murine in vivo model of MM resulted in a decreased homing of 5T2MM cells to the BM compartment. In conclusion, LN acts as a chemoattractant for MM cells by interaction with 67LR. This interaction might be important during extravasation of circulating MM cells. © 2001 Cancer Research Campaign

Keywords: multiple myeloma, homing, laminin-1, 67LR, migration, extravasation

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asosingh K., Radl J., Van Riet I., Van Camp B., Vanderkerken K. The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J. 2000;1(5):351–356. doi: 10.1038/sj.thj.6200052. [DOI] [PubMed] [Google Scholar]
  2. Bakkus M. H., Heirman C., Van Riet I., Van Camp B., Thielemans K. Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood. 1992 Nov 1;80(9):2326–2335. [PubMed] [Google Scholar]
  3. Butcher E. C., Picker L. J. Lymphocyte homing and homeostasis. Science. 1996 Apr 5;272(5258):60–66. doi: 10.1126/science.272.5258.60. [DOI] [PubMed] [Google Scholar]
  4. Carbone A., Gloghini A., Colombatti A., Castronovo V., Ménard S. Expression of the monomeric 67-kd laminin-binding protein in human lymphomas as defined by MLuC5 monoclonal antibody and paraffin section immunohistochemistry. Hum Pathol. 1995 May;26(5):541–546. doi: 10.1016/0046-8177(95)90251-1. [DOI] [PubMed] [Google Scholar]
  5. Clément B., Segui-Real B., Savagner P., Kleinman H. K., Yamada Y. Hepatocyte attachment to laminin is mediated through multiple receptors. J Cell Biol. 1990 Jan;110(1):185–192. doi: 10.1083/jcb.110.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. D'Errico A., Garbisa S., Liotta L. A., Castronovo V., Stetler-Stevenson W. G., Grigioni W. F. Augmentation of type IV collagenase, laminin receptor, and Ki67 proliferation antigen associated with human colon, gastric, and breast carcinoma progression. Mod Pathol. 1991 Mar;4(2):239–246. [PubMed] [Google Scholar]
  7. Durie B. G., Salmon S. E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975 Sep;36(3):842–854. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  8. Graf J., Iwamoto Y., Sasaki M., Martin G. R., Kleinman H. K., Robey F. A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell. 1987 Mar 27;48(6):989–996. doi: 10.1016/0092-8674(87)90707-0. [DOI] [PubMed] [Google Scholar]
  9. Graf J., Ogle R. C., Robey F. A., Sasaki M., Martin G. R., Yamada Y., Kleinman H. K. A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor. Biochemistry. 1987 Nov 3;26(22):6896–6900. doi: 10.1021/bi00396a004. [DOI] [PubMed] [Google Scholar]
  10. Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer. 1996 Mar 15;65(6):717–722. doi: 10.1002/(SICI)1097-0215(19960315)65:6<717::AID-IJC1>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  11. Iwamoto Y., Nomizu M., Yamada Y., Ito Y., Tanaka K., Sugioka Y. Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR). Br J Cancer. 1996 Mar;73(5):589–595. doi: 10.1038/bjc.1996.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwamoto Y., Robey F. A., Graf J., Sasaki M., Kleinman H. K., Yamada Y., Martin G. R. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science. 1987 Nov 20;238(4830):1132–1134. doi: 10.1126/science.2961059. [DOI] [PubMed] [Google Scholar]
  13. Kim W. H., Lee B. L., Jun S. H., Song S. Y., Kleinman H. K. Expression of 32/67-kDa laminin receptor in laminin adhesion-selected human colon cancer cell lines. Br J Cancer. 1998;77(1):15–20. doi: 10.1038/bjc.1998.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klominek J., Robért K. H., Sundqvist K. G. Chemotaxis and haptotaxis of human malignant mesothelioma cells: effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance. Cancer Res. 1993 Sep 15;53(18):4376–4382. [PubMed] [Google Scholar]
  15. Ludwig H., Meran J., Zojer N. Multiple myeloma: an update on biology and treatment. Ann Oncol. 1999;10 (Suppl 6):31–43. [PubMed] [Google Scholar]
  16. Massia S. P., Rao S. S., Hubbell J. A. Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alpha-actinin and vinculin. J Biol Chem. 1993 Apr 15;268(11):8053–8059. [PubMed] [Google Scholar]
  17. Nakai M., Mundy G. R., Williams P. J., Boyce B., Yoneda T. A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res. 1992 Oct 1;52(19):5395–5399. [PubMed] [Google Scholar]
  18. Nilsson K. Characteristics of established myeloma and lymphoblastoid cell lines derived from an E myeloma patient: a comparative study. Int J Cancer. 1971 May 15;7(3):380–396. doi: 10.1002/ijc.2910070303. [DOI] [PubMed] [Google Scholar]
  19. Okuno Y., Takahashi T., Suzuki A., Ichiba S., Nakamura K., Fukumoto M., Okada T., Okada H., Imura H. Establishment and characterization of four myeloma cell lines which are responsive to interleukin-6 for their growth. Leukemia. 1991 Jul;5(7):585–591. [PubMed] [Google Scholar]
  20. Radl J., De Glopper E. D., Schuit H. R., Zurcher C. Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol. 1979 Feb;122(2):609–613. [PubMed] [Google Scholar]
  21. Ramos D. M., Cheng Y. F., Kramer R. H. Role of laminin-binding integrin in the invasion of basement membrane matrices by fibrosarcoma cells. Invasion Metastasis. 1991;11(3):125–138. [PubMed] [Google Scholar]
  22. Roehm N. W., Rodgers G. H., Hatfield S. M., Glasebrook A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991 Sep 13;142(2):257–265. doi: 10.1016/0022-1759(91)90114-u. [DOI] [PubMed] [Google Scholar]
  23. Satoh K., Narumi K., Abe T., Sakai T., Kikuchi T., Tanaka M., Shimo-Oka T., Uchida M., Tezuka F., Isemura M. Diminution of 37-kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer. 1999 Jun;80(8):1115–1122. doi: 10.1038/sj.bjc.6690474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shibayama H., Tagawa S., Hattori H., Inoue R., Katagiri S., Kitani T. Laminin and fibronectin promote the chemotaxis of human malignant plasma cell lines. Blood. 1995 Jul 15;86(2):719–725. [PubMed] [Google Scholar]
  25. Situ R., Lee E. C., McCoy J. P., Jr, Varani J. Stimulation of murine tumour cell motility by laminin. J Cell Sci. 1984 Aug;70:167–176. doi: 10.1242/jcs.70.1.167. [DOI] [PubMed] [Google Scholar]
  26. Spessotto P., Yin Z., Magro G., Deutzmann R., Chiu A., Colombatti A., Perris R. Laminin isoforms 8 and 10 are primary components of the subendothelial basement membrane promoting interaction with neoplastic lymphocytes. Cancer Res. 2001 Jan 1;61(1):339–347. [PubMed] [Google Scholar]
  27. Van Riet I., De Greef C., Aharchi F., Woischwill C., De Waele M., Bakkus M., Lacor P., Schots R., Van Camp B. Establishment and characterization of a human stroma-dependent myeloma cell line (MM5.1) and its stroma-independent variant (MM5.2). Leukemia. 1997 Feb;11(2):284–293. doi: 10.1038/sj.leu.2400564. [DOI] [PubMed] [Google Scholar]
  28. Van Riet I., Heirman C., Lacor P., De Waele M., Thielemans K., Van Camp B. Detection of monoclonal B lymphocytes in bone marrow and peripheral blood of multiple myeloma patients by immunoglobulin gene rearrangement studies. Br J Haematol. 1989 Nov;73(3):289–295. doi: 10.1111/j.1365-2141.1989.tb07742.x. [DOI] [PubMed] [Google Scholar]
  29. Van Riet I., Vanderkerken K., de Greef C., Van Camp B. Homing behaviour of the malignant cell clone in multiple myeloma. Med Oncol. 1998 Sep;15(3):154–164. doi: 10.1007/BF02821934. [DOI] [PubMed] [Google Scholar]
  30. Vanderkerken K., De Greef C., Asosingh K., Arteta B., De Veerman M., Vande Broek I., Van Riet I., Kobayashi M., Smedsrod B., Van Camp B. Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br J Cancer. 2000 Feb;82(4):953–959. doi: 10.1054/bjoc.1999.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vanderkerken K., De Raeve H., Goes E., Van Meirvenne S., Radl J., Van Riet I., Thielemans K., Van Camp B. Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse. Br J Cancer. 1997;76(4):451–460. doi: 10.1038/bjc.1997.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vanderkerken K., Goes E., De Raeve H., Radl J., Van Camp B. Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography. Br J Cancer. 1996 Jun;73(12):1463–1465. doi: 10.1038/bjc.1996.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974 Nov;77(2):314–346. [PMC free article] [PubMed] [Google Scholar]
  34. Wewer U. M., Taraboletti G., Sobel M. E., Albrechtsen R., Liotta L. A. Role of laminin receptor in tumor cell migration. Cancer Res. 1987 Nov 1;47(21):5691–5698. [PubMed] [Google Scholar]
  35. Yoshida N., Ishii E., Nomizu M., Yamada Y., Mohri S., Kinukawa N., Matsuzaki A., Oshima K., Hara T., Miyazaki S. The laminin-derived peptide YIGSR (Tyr-Ile-Gly-Ser-Arg) inhibits human pre-B leukaemic cell growth and dissemination to organs in SCID mice. Br J Cancer. 1999 Aug;80(12):1898–1904. doi: 10.1038/sj.bjc.6690618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES