Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1993 Dec;67(12):7673–7676. doi: 10.1128/jvi.67.12.7673-7676.1993

Immunization with the immediate-early tegument protein (open reading frame 62) of varicella-zoster virus protects guinea pigs against virus challenge.

C Sabella 1, P W Lowry 1, G M Abbruzzi 1, C M Koropchak 1, P R Kinchington 1, M Sadegh-Zadeh 1, J Hay 1, W T Ruyechan 1, A M Arvin 1
PMCID: PMC238239  PMID: 8230489

Abstract

The IE62 protein, the primary regulatory protein of varicella-zoster virus (VZV) and the major component of the virion tegument, was an effective immunogen in the guinea pig model of VZV infection, whereas the ORF 29 gene product, a nonstructural DNA replication protein, did not elicit protection. All animals immunized with the ORF 29 protein had cell-associated viremia compared with 2 of 11 guinea pigs given the IE62 protein (P = 0.005). VZV was detected in ganglia from 38% of the animals given the ORF 29 protein and 44% of the control animals compared with 9% of the animals immunized with the IE62 protein (P = 0.04). In contrast to the IE62 protein, immunization with the ORF 29 protein did not prime the animals for an enhanced T-cell response upon challenge with infectious virus. The VZV IE62 protein has potential value as a vaccine component.

Full text

PDF
7673

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvin A. M., Kinney-Thomas E., Shriver K., Grose C., Koropchak C. M., Scranton E., Wittek A. E., Diaz P. S. Immunity to varicella-zoster viral glycoproteins, gp I (gp 90/58) and gp III (gp 118), and to a nonglycosylated protein, p 170. J Immunol. 1986 Aug 15;137(4):1346–1351. [PubMed] [Google Scholar]
  2. Arvin A. M., Sharp M., Smith S., Koropchak C. M., Diaz P. S., Kinchington P., Ruyechan W., Hay J. Equivalent recognition of a varicella-zoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J Immunol. 1991 Jan 1;146(1):257–264. [PubMed] [Google Scholar]
  3. Arvin A. M., Solem S. M., Koropchak C. M., Kinney-Thomas E., Paryani S. G. Humoral and cellular immunity to varicella-zoster virus glycoprotein gpI and to a non-glycosylated protein, p170, in the strain 2 guinea-pig. J Gen Virol. 1987 Sep;68(Pt 9):2449–2454. doi: 10.1099/0022-1317-68-9-2449. [DOI] [PubMed] [Google Scholar]
  4. Banks T. A., Allen E. M., Dasgupta S., Sandri-Goldin R., Rouse B. T. Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize immediate-early protein ICP27. J Virol. 1991 Jun;65(6):3185–3191. doi: 10.1128/jvi.65.6.3185-3191.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol. 1985 Dec;5(12):3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Croen K. D., Ostrove J. M., Dragovic L. J., Straus S. E. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9773–9777. doi: 10.1073/pnas.85.24.9773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Croen K. D., Straus S. E. Varicella-zoster virus latency. Annu Rev Microbiol. 1991;45:265–282. doi: 10.1146/annurev.mi.45.100191.001405. [DOI] [PubMed] [Google Scholar]
  8. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  9. Gupte S. S., Olson J. W., Ruyechan W. T. The major herpes simplex virus type-1 DNA-binding protein is a zinc metalloprotein. J Biol Chem. 1991 Jun 25;266(18):11413–11416. [PubMed] [Google Scholar]
  10. Inchauspe G., Nagpal S., Ostrove J. M. Mapping of two varicella-zoster virus-encoded genes that activate the expression of viral early and late genes. Virology. 1989 Dec;173(2):700–709. doi: 10.1016/0042-6822(89)90583-7. [DOI] [PubMed] [Google Scholar]
  11. Kinchington P. R., Hougland J. K., Arvin A. M., Ruyechan W. T., Hay J. The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J Virol. 1992 Jan;66(1):359–366. doi: 10.1128/jvi.66.1.359-366.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kinchington P. R., Inchauspe G., Subak-Sharpe J. H., Robey F., Hay J., Ruyechan W. T. Identification and characterization of a varicella-zoster virus DNA-binding protein by using antisera directed against a predicted synthetic oligopeptide. J Virol. 1988 Mar;62(3):802–809. doi: 10.1128/jvi.62.3.802-809.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koropchak C. M., Solem S. M., Diaz P. S., Arvin A. M. Investigation of varicella-zoster virus infection of lymphocytes by in situ hybridization. J Virol. 1989 May;63(5):2392–2395. doi: 10.1128/jvi.63.5.2392-2395.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koszinowski U. H. Molecular aspects of immune recognition of cytomegalovirus. Transplant Proc. 1991 Jun;23(3 Suppl 3):70-3, discussion 74. [PubMed] [Google Scholar]
  15. Levin M. J., Murray M., Rotbart H. A., Zerbe G. O., White C. J., Hayward A. R. Immune response of elderly individuals to a live attenuated varicella vaccine. J Infect Dis. 1992 Aug;166(2):253–259. doi: 10.1093/infdis/166.2.253. [DOI] [PubMed] [Google Scholar]
  16. Lowry P. W., Sabella C., Koropchak C. M., Watson B. N., Thackray H. M., Abbruzzi G. M., Arvin A. M. Investigation of the pathogenesis of varicella-zoster virus infection in guinea pigs by using polymerase chain reaction. J Infect Dis. 1993 Jan;167(1):78–83. doi: 10.1093/infdis/167.1.78. [DOI] [PubMed] [Google Scholar]
  17. Lowry P. W., Solem S., Watson B. N., Koropchak C. M., Thackray H. M., Kinchington P. R., Ruyechan W. T., Ling P., Hay J., Arvin A. M. Immunity in strain 2 guinea-pigs inoculated with vaccinia virus recombinants expressing varicella-zoster virus glycoproteins I, IV, V or the protein product of the immediate early gene 62. J Gen Virol. 1992 Apr;73(Pt 4):811–819. doi: 10.1099/0022-1317-73-4-811. [DOI] [PubMed] [Google Scholar]
  18. Martin S., Zhu X. X., Silverstein S. J., Courtney R. J., Yao F., Jenkins F. J., Rouse B. T. Murine cytotoxic T lymphocytes specific for herpes simplex virus type 1 recognize the immediate early protein ICP4 but not ICP0. J Gen Virol. 1990 Oct;71(Pt 10):2391–2399. doi: 10.1099/0022-1317-71-10-2391. [DOI] [PubMed] [Google Scholar]
  19. Myers M. G., Stanberry L. R., Edmond B. J. Varicella-zoster virus infection of strain 2 guinea pigs. J Infect Dis. 1985 Jan;151(1):106–113. doi: 10.1093/infdis/151.1.106. [DOI] [PubMed] [Google Scholar]
  20. Perera L. P., Mosca J. D., Ruyechan W. T., Hayward G. S., Straus S. E., Hay J. A major transactivator of varicella-zoster virus, the immediate-early protein IE62, contains a potent N-terminal activation domain. J Virol. 1993 Aug;67(8):4474–4483. doi: 10.1128/jvi.67.8.4474-4483.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perera L. P., Mosca J. D., Sadeghi-Zadeh M., Ruyechan W. T., Hay J. The varicella-zoster virus immediate early protein, IE62, can positively regulate its cognate promoter. Virology. 1992 Nov;191(1):346–354. doi: 10.1016/0042-6822(92)90197-w. [DOI] [PubMed] [Google Scholar]
  22. Riddell S. R., Rabin M., Geballe A. P., Britt W. J., Greenberg P. D. Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol. 1991 Apr 15;146(8):2795–2804. [PubMed] [Google Scholar]
  23. Roberts C. R., Weir A. C., Hay J., Straus S. E., Ruyechan W. T. DNA-binding proteins present in varicella-zoster virus-infected cells. J Virol. 1985 Jul;55(1):45–53. doi: 10.1128/jvi.55.1.45-53.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tenser R. B., Hyman R. W. Latent herpesvirus infections of neurons in guinea pigs and humans. Yale J Biol Med. 1987 Mar-Apr;60(2):159–167. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES