Abstract
O-methylation of chloroguaiacols has been examined in a number of gram-positive and gram-negative bacteria to elucidate the effects of substrate concentration, growth conditions, and cell density. Substrate concentrations between 0.1 and 20.0 mg liter−1 were used, and it was found that (i) yields of the O-methylated products were significantly higher at the lowest concentrations and (ii) rates of O-methylation were not linear functions of concentration. With 3,4,5-trichloroguaiacol, the nature of the metabolites also changed with concentration. During growth with a range of substrates, O-methylation of chloroguaiacols also took place. With vanillate, however, de-O-methylation occurred: the chlorocatechol formed from 4,5,6-trichloroguaiacol was successively O-methylated to 3,4,5-trichloroguaiacol and 3,4,5-trichloroveratrole, whereas that produced from 4,5-dichloroguaiacol was degraded without O-methylation. Effective O-methylation in nonproliferating suspensions occurred at cell densities as low as 105 cells ml−1, although both the yields and the rates were lower than in more dense cultures. By using disk assays, it was shown that, compared with their precursors, all of the O-methylated metabolites were virtually nontoxic to the strains examined. It is therefore proposed that O-methylation functions as a detoxification mechanism for cells exposed to chloroguaiacols and chlorophenols. In detail, significant differences were observed in the response of gram-positive and gram-negative cell strains to chloroguaiacols. It is concluded that bacterial O-methylation is to be expected in the natural environment subjected to discharge of chloroguaiacols.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlborg U. G., Thunberg T. M. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. Crit Rev Toxicol. 1980 Jul;7(1):1–35. doi: 10.3109/10408448009017934. [DOI] [PubMed] [Google Scholar]
- Bartels I., Knackmuss H. J., Reineke W. Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols. Appl Environ Microbiol. 1984 Mar;47(3):500–505. doi: 10.1128/aem.47.3.500-505.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt F. H., Erdin N., Staudinger H., Ullrich V. Interactions of substrates with a purified 4-methoxybenzoate monooxygenase system (O-demethylating) from Pseudomonas putida. Eur J Biochem. 1973 May;35(1):126–134. doi: 10.1111/j.1432-1033.1973.tb02818.x. [DOI] [PubMed] [Google Scholar]
- Boethling R. S., Alexander M. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl Environ Microbiol. 1979 Jun;37(6):1211–1216. doi: 10.1128/aem.37.6.1211-1216.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerniglia C. E., Freeman J. P., Mitchum R. K. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol. 1982 May;43(5):1070–1075. doi: 10.1128/aem.43.5.1070-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L., McCoy E., Harkin J. M., Kirk T. K., Obst J. R. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl Microbiol. 1973 Aug;26(2):176–184. doi: 10.1128/am.26.2.176-184.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton H., Stirling D. I. Co-metabolism. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):481–496. doi: 10.1098/rstb.1982.0056. [DOI] [PubMed] [Google Scholar]
- Donnelly M. I., Dagley S. Production of methanol from aromatic acids by Pseudomonas putida. J Bacteriol. 1980 Jun;142(3):916–924. doi: 10.1128/jb.142.3.916-924.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golbeck J. H., Albaugh S. A., Radmer R. Metabolism of biphenyl by Aspergillus toxicarius: induction of hydroxylating activity and accumulation of water-soluble conjugates. J Bacteriol. 1983 Oct;156(1):49–57. doi: 10.1128/jb.156.1.49-57.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodfellow M., Alderson G. The actinomycete-genus Rhodococcus: a home for the "rhodochrous" complex. J Gen Microbiol. 1977 May;100(1):99–122. doi: 10.1099/00221287-100-1-99. [DOI] [PubMed] [Google Scholar]
- Haller H. D., Finn R. K. Kinetics of biodegradation of p-nitrobenzoate and inhibition by benzoate in a pseudomonad. Appl Environ Microbiol. 1978 May;35(5):890–896. doi: 10.1128/aem.35.5.890-896.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulbert M. H. Cometabolism: a critique. J Theor Biol. 1977 Nov 21;69(2):287–291. doi: 10.1016/0022-5193(77)90137-0. [DOI] [PubMed] [Google Scholar]
- Mallory L. M., Austin B., Colwell R. R. Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Can J Microbiol. 1977 Jun;23(6):733–750. doi: 10.1139/m77-110. [DOI] [PubMed] [Google Scholar]
- Martin P., Macleod R. A. Observations on the distinction between oligotrophic and eutrophic marine bacteria. Appl Environ Microbiol. 1984 May;47(5):1017–1022. doi: 10.1128/aem.47.5.1017-1022.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki T., Kaneko S., Horii S., Yamagishi T. Identification of polyhalogenated anisoles and phenols in oysters collected from Tokyo Bay. Bull Environ Contam Toxicol. 1981 May;26(5):577–584. doi: 10.1007/BF01622140. [DOI] [PubMed] [Google Scholar]
- Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris D. F., Steen W. C., Baughman G. L., Barnett J. T. Second-order model to predict microbial degradation of organic compounds in natural waters. Appl Environ Microbiol. 1981 Mar;41(3):603–609. doi: 10.1128/aem.41.3.603-609.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris D. F., Wolfe N. L., Steen W. C. Structure-activity relationships in microbial transformation of phenols. Appl Environ Microbiol. 1982 Jul;44(1):153–158. doi: 10.1128/aem.44.1.153-158.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin H. E., Subba-Rao R. V., Alexander M. Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samples. Appl Environ Microbiol. 1982 May;43(5):1133–1138. doi: 10.1128/aem.43.5.1133-1138.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariaslani F. S., Rosazza J. P. Novel Biotransformations of 7-Ethoxycoumarin by Streptomyces griseus. Appl Environ Microbiol. 1983 Aug;46(2):468–474. doi: 10.1128/aem.46.2.468-474.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simkins S., Alexander M. Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol. 1984 Jun;47(6):1299–1306. doi: 10.1128/aem.47.6.1299-1306.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subba-Rao R. V., Rubin H. E., Alexander M. Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage. Appl Environ Microbiol. 1982 May;43(5):1139–1150. doi: 10.1128/aem.43.5.1139-1150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe I., Kashimoto T., Tatsukawa R. Identification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka. Bull Environ Contam Toxicol. 1983 Jul;31(1):48–52. doi: 10.1007/BF01608765. [DOI] [PubMed] [Google Scholar]
- Weisblum B., Siddhikol C., Lai C. J., Demohn V. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J Bacteriol. 1971 Jun;106(3):835–847. doi: 10.1128/jb.106.3.835-847.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. J. A simple agar plate method, using micro-algae, for herbicide bio-assay or detection. Bull Environ Contam Toxicol. 1975 Jul;14(01):65–70. doi: 10.1007/BF01685601. [DOI] [PubMed] [Google Scholar]
- You I. S., Bartha R. Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl Environ Microbiol. 1982 Sep;44(3):678–681. doi: 10.1128/aem.44.3.678-681.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
