Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Apr;49(4):964–968. doi: 10.1128/aem.49.4.964-968.1985

12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum.

R Edenharder, J Schneider
PMCID: PMC238478  PMID: 4004226

Abstract

12 beta-Hydroxysteroid dehydrogenating activities were detected in 13 strains of Clostridium paraputrificum, 1 strain of C. tertium, and 1 strain of C. difficile, together with a 3 alpha- and 3 beta-hydroxysteroid dehydrogenase system in many strains. Redox reactions a C-12 of disubstituted and trisubstituted bile acids were performed unspecifically by representative strains of C. paraputrificum. 3 alpha,12 beta-, 3 beta,12 beta-Dihydroxy-, 3 alpha, 7 alpha, 12 beta-trihydroxy-, and 3-keto,12 beta-hydroxy-5 beta-cholanoic acids, so far not known as bacterial bile acid metabolites, were identified. Epimerization of the 12 alpha-hydroxyl group of deoxycholate via the 12-keto intermediate was achieved by cocultivation of C. paraputrificum and Eubacterium lentum, elaborating a 12 alpha-hydroxysteroid dehydrogenase only. In addition, epimerization at C-12 was demonstrated with mixed human fecal cultures.

Full text

PDF
964

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. S., Kuksis A., Beveridge J. M. Excretion of bile acids by three men on corn oil and butterfat diets. Can J Biochem. 1966 Oct;44(10):1377–1388. doi: 10.1139/o66-156. [DOI] [PubMed] [Google Scholar]
  2. Edenharder R., Knaflic T. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. J Lipid Res. 1981 May;22(4):652–658. [PubMed] [Google Scholar]
  3. Eneroth P., Gordon B., Ryhage R., Sjövall J. Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. J Lipid Res. 1966 Jul;7(4):511–523. [PubMed] [Google Scholar]
  4. Eyssen H., De Pauw G., Stragier J., Verhulst A. Cooperative formation of omega-muricholic acid by intestinal microorganisms. Appl Environ Microbiol. 1983 Jan;45(1):141–147. doi: 10.1128/aem.45.1.141-147.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Finegold S. M., Attebery H. R., Sutter V. L. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr. 1974 Dec;27(12):1456–1469. doi: 10.1093/ajcn/27.12.1456. [DOI] [PubMed] [Google Scholar]
  6. Hirano S., Masuda N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J Lipid Res. 1981 Sep;22(7):1060–1068. [PubMed] [Google Scholar]
  7. Hirano S., Masuda N., Oda H., Mukai H. Transformation of bile acids by Clostridium perfringens. Appl Environ Microbiol. 1981 Sep;42(3):394–399. doi: 10.1128/aem.42.3.394-399.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuksis A., Child P. Analysis and structure determination of unsaturated 5 beta - cholanoic acids. Lipids. 1980 Sep;15(9):770–782. doi: 10.1007/BF02534031. [DOI] [PubMed] [Google Scholar]
  9. MacDonald I. A., Jellett J. F., Mahony D. E., Holdeman L. V. Bile salt 3 alpha- and 12 alpha-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol. 1979 May;37(5):992–1000. doi: 10.1128/aem.37.5.992-1000.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacDonald I. A., Rochon Y. P., Hutchison D. M., Holdeman L. V. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. Appl Environ Microbiol. 1982 Nov;44(5):1187–1195. doi: 10.1128/aem.44.5.1187-1195.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macdonald I. A., Bokkenheuser V. D., Winter J., McLernon A. M., Mosbach E. H. Degradation of steroids in the human gut. J Lipid Res. 1983 Jun;24(6):675–700. [PubMed] [Google Scholar]
  12. Macdonald I. A., Hutchison D. M., Forrest T. P., Bokkenheuser V. D., Winter J., Holdeman L. V. Metabolism of primary bile acids by Clostridium perfringens. J Steroid Biochem. 1983 Jan;18(1):97–104. doi: 10.1016/0022-4731(83)90336-9. [DOI] [PubMed] [Google Scholar]
  13. Macdonald I. A., Hutchison D. M., Forrest T. P. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum. J Lipid Res. 1981 Mar;22(3):458–466. [PubMed] [Google Scholar]
  14. Mitsuoka T., Ono K. Die Faekalflora bei Menschen. V. Mitteilung: Die Schwankungen in der Zusammensetzung der Faekalflora gesunder Erwachsener. Zentralbl Bakteriol Orig A. 1977 Jun;238(2):228–236. [PubMed] [Google Scholar]
  15. Sacquet E. C., Raibaud P. M., Mejean C., Riottot M. J., Leprince C., Leglise P. C. Bacterial formation of omega-muricholic acid in rats. Appl Environ Microbiol. 1979 Jun;37(6):1127–1131. doi: 10.1128/aem.37.6.1127-1131.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES