Abstract
Several poliovirus and coxsackievirus isolates from environmental sources were compared with laboratory strains to determine their rate of inactivation by chlorine. All viruses were tested for up to 1,000 min in the presence of an initial free residual chlorine level of ca. 0.4 mg/liter. Coxsackievirus B5 (CB-5) isolates were found to be more resistant to chlorine than coxsackievirus B4 (CB-4), followed by poliovirus 1, 2, and 3 in order of decreasing resistance to chlorine. Environmental isolates of CB-5 were more resistant than the laboratory strain tested, and for two strains 12 and 22% of the input virus was still infectious after 100 min in the presence of free residual chlorine. Although CB-4 isolates were less resistant to chlorine than CB-5 isolates, after 1,000 min of contact 0.01% of the input virus was still infectious. Except for CB-5 isolates, isolates from environmental sources did not appear to be more resistant to chlorine than laboratory strains. Viruses isolated at different phases during the preparation of drinking water were not more resistant to chlorine and must thus have been protected by other mechanisms.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Engelbrecht R. S., Weber M. J., Salter B. L., Schmidt C. A. Comparative inactivation of viruses by chlorine. Appl Environ Microbiol. 1980 Aug;40(2):249–256. doi: 10.1128/aem.40.2.249-256.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen H., Thomas K., Sharp D. G. Inactivation of coxsackieviruses B3 and B5 in water by chlorine. Appl Environ Microbiol. 1980 Sep;40(3):633–640. doi: 10.1128/aem.40.3.633-640.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keswick B. H., Gerba C. P., DuPont H. L., Rose J. B. Detection of enteric viruses in treated drinking water. Appl Environ Microbiol. 1984 Jun;47(6):1290–1294. doi: 10.1128/aem.47.6.1290-1294.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien R. T., Newman J. Structural and compositional changes associated with chlorine inactivation of polioviruses. Appl Environ Microbiol. 1979 Dec;38(6):1034–1039. doi: 10.1128/aem.38.6.1034-1039.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekla L., Stackiw W., Kay C., VanBuckenhout L. Enteric viruses in renovated water in Manitoba. Can J Microbiol. 1980 Apr;26(4):518–523. doi: 10.1139/m80-087. [DOI] [PubMed] [Google Scholar]
- Shaffer P. T., Metcalf T. G., Sproul O. J. Chlorine resistance of poliovirus isolants recovered from drinking water. Appl Environ Microbiol. 1980 Dec;40(6):1115–1121. doi: 10.1128/aem.40.6.1115-1121.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp D. G., Young D. C., Floyd R., Johnson J. D. Effect of ionic environment on the inactivation of poliovirus in water by chlorine. Appl Environ Microbiol. 1980 Mar;39(3):530–534. doi: 10.1128/aem.39.3.530-534.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
