Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 May;49(5):1090–1093. doi: 10.1128/aem.49.5.1090-1093.1985

Inhibitory Effect of Pseudobactin on the Uptake of Iron by Higher Plants

J O Becker 1, R W Hedges 1,*, E Messens 1
PMCID: PMC238511  PMID: 16346782

Abstract

Purified pseudobactin inhibits the uptake of ferric iron by the roots of peas and maize plants sufficiently to reduce the synthesis of chlorophyll. This inhibition is interpreted as competitive binding, as described for synthetic chelating compounds.

Full text

PDF
1090

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. C., Tiffin L. O., Holmes R. S. Competition Between Chelating Agents and Roots as Factor Affecting Absorption of Iron and Other Ions by Plant Species. Plant Physiol. 1960 Nov;35(6):878–886. doi: 10.1104/pp.35.6.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elander R. P., Mabe J. A., Hamill R. L., Gorman M. Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens. Folia Microbiol (Praha) 1971;16(3):156–165. doi: 10.1007/BF02884206. [DOI] [PubMed] [Google Scholar]
  3. Gibson F., Magrath D. I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta. 1969 Nov 18;192(2):175–184. doi: 10.1016/0304-4165(69)90353-5. [DOI] [PubMed] [Google Scholar]
  4. Hartmann A., Braun V. Iron transport in Escherichia coli: uptake and modification of ferrichrome. J Bacteriol. 1980 Jul;143(1):246–255. doi: 10.1128/jb.143.1.246-255.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Maehr H., Pitcher R. G. Identity of albomycin 2 and antibiotic Ro 5-2667. J Antibiot (Tokyo) 1971 Dec;24(12):830–834. doi: 10.7164/antibiotics.24.830. [DOI] [PubMed] [Google Scholar]
  6. Neilands J. B. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435. [DOI] [PubMed] [Google Scholar]
  7. Powell P. E., Szaniszlo P. J., Reid C. P. Confirmation of Occurrence of Hydroxamate Siderophores in Soil by a Novel Escherichia coli Bioassay. Appl Environ Microbiol. 1983 Nov;46(5):1080–1083. doi: 10.1128/aem.46.5.1080-1083.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schroth M. N., Hancock J. G. Disease-suppressive soil and root-colonizing bacteria. Science. 1982 Jun 25;216(4553):1376–1381. doi: 10.1126/science.216.4553.1376. [DOI] [PubMed] [Google Scholar]
  9. Teintze M., Hossain M. B., Barnes C. L., Leong J., van der Helm D. Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry. 1981 Oct 27;20(22):6446–6457. doi: 10.1021/bi00525a025. [DOI] [PubMed] [Google Scholar]
  10. Wood L. V., Klucas R. V., Shearman R. C. Nitrogen fixation (acetylene reduction) by Klebsiella pneumoniae in association with 'Park' Kentucky bluegrass (Poa pratensis L.). Can J Microbiol. 1981 Jan;27(1):52–56. doi: 10.1139/m81-008. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES