Abstract
An ampicillin-resistant, RecA- strain of Escherichia coli (HB101) harboring the multicopy pBR322 plasmid containing the structural gene for ribulosebisphosphate carboxylase from Rhodospirillum rubrum was used to prepare large quantities of the carboxylase protein. This recombinant system was characterized by extreme plasmid instability, which resulted in part from the 1.7-fold faster growth rate of plasmid-free cells and in part from very rapid rates of plasmid segregation. The plasmid-containing organisms produced and excreted a large amount of beta-lactamase activity, with the result that ampicillin selection could only be maintained for a very short period of time, after which the plasmid-containing (carboxylase-producing) cells were overgrown by plasmid-free cells. The instability was so severe that even isolated colonies prepared on ampicillin-containing plates were impure and contained plasmid-free cells. Nevertheless, large quantities of carboxylase protein could be obtained from this system by using a highly dilute inoculum which allows selection of ampicillin-resistant (carboxylase-producing) organisms for a sufficient period of time so that the period of growth under nonselective conditions was minimized, and cells harvested at high cell densities contained large amounts of the carboxylase protein. In the present instance, 300-liter fermentations were initiated with a 0.3-microliter inoculum of freshly grown cells. After 20 h of growth in rich medium containing ampicillin, the harvested cells contained 74 g of ribulosebisphosphate carboxylase protein (average of two separate cultures). These results are discussed in terms of the general nature of plasmid instability and protocols available to minimize the effects of such instability.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson T. F., Lustbader E. Inheritability of plasmids and population dynamics of cultured cells. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4085–4089. doi: 10.1073/pnas.72.10.4085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang A. C., Lansman R. A., Clayton D. A., Cohen S. N. Studies of mouse mitochondrial DNA in Escherichia coli: structure and function of the eucaryotic-procaryotic chimeric plasmids. Cell. 1975 Oct;6(2):231–244. doi: 10.1016/0092-8674(75)90014-8. [DOI] [PubMed] [Google Scholar]
- Engberg B., Nordström K. Replication of R-factor R1 in Scherichia coli K-12 at different growth rates. J Bacteriol. 1975 Jul;123(1):179–186. doi: 10.1128/jb.123.1.179-186.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futcher A. B., Cox B. S. Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol. 1984 Jan;157(1):283–290. doi: 10.1128/jb.157.1.283-290.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godwin D., Slater J. H. The influence of the growth environment on the stability of a drug resistance plasmid in Escherichia coli K12. J Gen Microbiol. 1979 Mar;111(1):201–210. doi: 10.1099/00221287-111-1-201. [DOI] [PubMed] [Google Scholar]
- Hakkaart M. J., Wesseling J. G., Veltkamp E., Nijkamp H. J. Maintenance of the bacteriocinogenic plasmid Clo DF13 in Escherichia coli cells. I. Localisation and mutual interactions of four Clo DF13 incompatibility regions. Mol Gen Genet. 1982;186(4):531–539. doi: 10.1007/BF00337961. [DOI] [PubMed] [Google Scholar]
- Imanaka T., Aiba S. A perspective on the application of genetic engineering: stability of recombinant plasmid. Ann N Y Acad Sci. 1981;369:1–14. doi: 10.1111/j.1749-6632.1981.tb14172.x. [DOI] [PubMed] [Google Scholar]
- Imanaka T., Tsunekawa H., Aiba S. Phenotypic stability of trp operon recombinant plasmids in Escherichia coli. J Gen Microbiol. 1980 May;118(1):253–261. doi: 10.1099/00221287-118-1-253. [DOI] [PubMed] [Google Scholar]
- Jones I. M., Primrose S. B., Robinson A., Ellwood D. C. Maintenance of some ColE1-type plasmids in chemostat culture. Mol Gen Genet. 1980;180(3):579–584. doi: 10.1007/BF00268063. [DOI] [PubMed] [Google Scholar]
- Meacock P. A., Cohen S. N. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell. 1980 Jun;20(2):529–542. doi: 10.1016/0092-8674(80)90639-x. [DOI] [PubMed] [Google Scholar]
- Nakazawa T. TOL plasmid in Pseudomonas aeruginosa PAO: thermosensitivity of self-maintenance and inhibition of host cell growth. J Bacteriol. 1978 Feb;133(2):527–535. doi: 10.1128/jb.133.2.527-535.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noack D., Roth M., Geuther R., Müller G., Undisz K., Hoffmeier C., Gáspár S. Maintenance and genetic stability of vector plasmids pBR322 and pBR325 in Escherichia coli K12 strains grown in a chemostat. Mol Gen Genet. 1981;184(1):121–124. doi: 10.1007/BF00271207. [DOI] [PubMed] [Google Scholar]
- O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul D. C., Van Frank R. M., Muth W. L., Ross J. W., Williams D. C. Immunocytochemical demonstration of human proinsulin chimeric polypeptide within cytoplasmic inclusion bodies of Escherichia coli. Eur J Cell Biol. 1983 Sep;31(2):171–174. [PubMed] [Google Scholar]
- Rood J. I., Sneddon M. K., Morrison J. F. Instability in tyrR strains of plasmids carrying the tyrosine operon: isolation and characterization of plasmid derivatives with insertions or deletions. J Bacteriol. 1980 Nov;144(2):552–559. doi: 10.1128/jb.144.2.552-559.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigal I. S., Harwood B. G., Arentzen R. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7157–7160. doi: 10.1073/pnas.79.23.7157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skogman G., Nilsson J., Gustafsson P. The use of a partition locus to increase stability of tryptophan-operon-bearing plasmids in Escherichia coli. Gene. 1983 Aug;23(2):105–115. doi: 10.1016/0378-1119(83)90042-2. [DOI] [PubMed] [Google Scholar]
- Williams D. C., Van Frank R. M., Muth W. L., Burnett J. P. Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science. 1982 Feb 5;215(4533):687–689. doi: 10.1126/science.7036343. [DOI] [PubMed] [Google Scholar]