Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 May;49(5):1134–1141. doi: 10.1128/aem.49.5.1134-1141.1985

15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification

Mark Poth 2, Dennis D Focht 2,*
PMCID: PMC238519  PMID: 16346787

Abstract

A series of 15N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the “denitrifying enzyme” nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14N) and 0.4 mM nitrite (99% 15N) was performed. No labeled nitrite was reduced to ammonium. All labeled material added was accounted for as either nitrite or nitrous oxide. The hypothesis that nitrous oxide is produced directly from nitrification was rejected since (i) it does not allow for the large amounts of double-labeled (m/z 46) nitrous oxide observed; (ii) the observed patterns of m/z 44, 45, and 46 nitrous oxide were completely consistent with a kinetic analysis based on denitrification as the sole mechanism of nitrous oxide production but not with a kinetic analysis based on both mechanisms; (iii) the asymptotic ratio of m/z 45 to m/z 46 nitrous oxide was consistent with denitrification kinetics but inconsistent with nitrification kinetics, which predicted no limit to m/z 45 production. It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide.

Full text

PDF
1134

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. H. The metabolism of hydroxylamine to nitrite by Nitrosomonas. Biochem J. 1964 Apr;91(1):8–17. doi: 10.1042/bj0910008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackmer A. M., Bremner J. M., Schmidt E. L. Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil. Appl Environ Microbiol. 1980 Dec;40(6):1060–1066. doi: 10.1128/aem.40.6.1060-1066.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bremner J. M., Blackmer A. M. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science. 1978 Jan 20;199(4326):295–296. doi: 10.1126/science.199.4326.295. [DOI] [PubMed] [Google Scholar]
  4. Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol. 1977;17(6):491–493. doi: 10.1002/jobm.3630170611. [DOI] [PubMed] [Google Scholar]
  5. COLLINS F. M. Effect of aeration on the formation of nitrate-reducing enzymes by Ps. aeruginosa. Nature. 1955 Jan 22;175(4447):173–174. doi: 10.1038/175173a0. [DOI] [PubMed] [Google Scholar]
  6. Goreau T. J., Kaplan W. A., Wofsy S. C., McElroy M. B., Valois F. W., Watson S. W. Production of NO(2) and N(2)O by Nitrifying Bacteria at Reduced Concentrations of Oxygen. Appl Environ Microbiol. 1980 Sep;40(3):526–532. doi: 10.1128/aem.40.3.526-532.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayward E., Whitwell H., Paul K. S., Barnes D. M. Steroid receptors in human meningioma. Clin Neuropharmacol. 1984;7(4):351–356. doi: 10.1097/00002826-198412000-00014. [DOI] [PubMed] [Google Scholar]
  8. Hooper A. B. A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine ad electron donor. Biochim Biophys Acta. 1968 Jul 16;162(1):49–65. doi: 10.1016/0005-2728(68)90213-2. [DOI] [PubMed] [Google Scholar]
  9. Knowles R. Denitrification. Microbiol Rev. 1982 Mar;46(1):43–70. doi: 10.1128/mr.46.1.43-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ritchie G. A., Nicholas D. J. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem J. 1972 Mar;126(5):1181–1191. doi: 10.1042/bj1261181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ritchie G. A., Nicholas D. J. The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea. Biochem J. 1974 Mar;138(3):471–480. doi: 10.1042/bj1380471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Seitzinger S. P., Pilson M. E., Nixon S. W. Nitrous oxide production in nearshore marine sediments. Science. 1983 Dec 16;222(4629):1244–1246. doi: 10.1126/science.222.4629.1244. [DOI] [PubMed] [Google Scholar]
  13. Soriano S., Walker N. Isolation of ammonia-oxidizing autotrophic bacteria. J Appl Bacteriol. 1968 Dec;31(4):493–497. doi: 10.1111/j.1365-2672.1968.tb00397.x. [DOI] [PubMed] [Google Scholar]
  14. St John R. T., Hollocher T. C. Nitrogen 15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa. J Biol Chem. 1977 Jan 10;252(1):212–218. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES