Abstract
Solid-state fermentation of aspen (Populus tremuloides) wood with Merulius tremellosus for 8 weeks removed 52% of the lignin but only 12% of the total wood weight, and increased the cellulase digestibility to 53% from 18%. Water-soluble and enzyme-solubilized lignin degradation products accumulated. Delignification was fastest at temperatures between 25 and 32.5°C and at a water-to-wood ratio of 2. Initial pH values between 4 and 6 were optimal; M. tremellosus acidified the wood to below pH 3.5 as it grew. The fungus tolerated CO2 concentrations of at least 14% and O2 concentrations down to 7% in the bulk gas phase. Both simple and complex nitrogen supplements inhibited delignification. Supplementary KH2PO4, MgSO4, CaCl2, thiamine, and trace elements had little effect on the fermentation. Four isolates of M. tremellosus had very similar abilities to delignify aspen wood. Biological delignification with M. tremellosus may be a useful pretreatment for enzymatic saccharification or ruminant feeding.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott T. P., Wicklow D. T. Degradation of lignin by cyathus species. Appl Environ Microbiol. 1984 Mar;47(3):585–587. doi: 10.1128/aem.47.3.585-587.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford D. L., Pometto A. L., Crawford R. L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate. Appl Environ Microbiol. 1983 Mar;45(3):898–904. doi: 10.1128/aem.45.3.898-904.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk T. K., Connors W. J., Zeikus J. G. Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microbiol. 1976 Jul;32(1):192–194. doi: 10.1128/aem.32.1.192-194.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millett M. A., Baker A. J., Satter L. D. Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol Bioeng Symp. 1976;(6):125–153. [PubMed] [Google Scholar]
- Phelan M. B., Crawford D. L., Pometto A. L., 3rd Isolation of lignocellulose-decomposing actinomycetes and degradation of specifically 14C-labeled lignocelluloses by six selected Streptomyces strains. Can J Microbiol. 1979 Nov;25(11):1270–1276. doi: 10.1139/m79-200. [DOI] [PubMed] [Google Scholar]
- Reade A. E., McQueen R. E. Investigation of white-rot fungi for the conversion of poplar into a potential feedstuff for ruminants. Can J Microbiol. 1983 Apr;29(4):457–463. doi: 10.1139/m83-073. [DOI] [PubMed] [Google Scholar]
- Reid I. D. Effects of Nitrogen Supplements on Degradation of Aspen Wood Lignin and Carbohydrate Components by Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Mar;45(3):830–837. doi: 10.1128/aem.45.3.830-837.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki Y., Takao S. Organic acid production by Basidiomycetes. 3. Cultural conditions for L-malic acid production. Appl Microbiol. 1967 Mar;15(2):373–377. doi: 10.1128/am.15.2.373-377.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicklow D. T., Detroy R. W., Jessee B. A. Decomposition of Lignocellulose by Cyathus stercoreus (Schw.) de Toni NRRL 6473, a "White Rot" Fungus from Cattle Dung. Appl Environ Microbiol. 1980 Jul;40(1):169–170. doi: 10.1128/aem.40.1.169-170.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
