Abstract
The rate of cellulose breakdown and density of bacterial populations were measured in the epilimnetic sediments and water columns of lakes in central Ontario that differ in pH, alkalinity, and nutrient status and are particularly sensitive to acidic inputs from atmospheric decomposition. There was no significant difference in decomposition rate in either oxic or anoxic sediment when mean epilimnetic pHs were in the range 5.5 to 6.9. The importance of these findings for the breakdown of autochthonous detritus in Canadian Shield lakes is discussed. Furthermore, the results of these experiments, in which dyed strips of cellophane (regenerated cellulose) were used as substrate, were compared with results of earlier decomposition studies carried out with coarse litter (leaves, twigs). Acridine orange direct counts of bacteria in the top 1 cm of sediment ranged from 5.5 × 108 to 1.0 × 109 per g and in planktonic water samples from 1.1 × 106 to 1.8 × 106 per ml. Bacterial densities were significantly higher in both the shallow sediment (P < 0.01) and the water column (P < 0.05) of dystrophic lakes than at these sites in oligotrophic lakes.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boylen C. W., Shick M. O., Roberts D. A., Singer R. Microbiological Survey of Adirondack Lakes with Various pH Values. Appl Environ Microbiol. 1983 May;45(5):1538–1544. doi: 10.1128/aem.45.5.1538-1544.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen P. J. The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol. 1977 Dec;23(12):1599–1653. doi: 10.1139/m77-236. [DOI] [PubMed] [Google Scholar]
- Crawford R. L., Robinson L. E., Foster R. D. Polyguaiacol: a useful model polymer for lignin biodegradation research. Appl Environ Microbiol. 1981 May;41(5):1112–1116. doi: 10.1128/aem.41.5.1112-1116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujioka R. S., Hashimoto H. H., Siwak E. B., Young R. H. Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol. 1981 Mar;41(3):690–696. doi: 10.1128/aem.41.3.690-696.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herlihy A. T., Mills A. L. Sulfate reduction in freshwater sediments receiving Acid mine drainage. Appl Environ Microbiol. 1985 Jan;49(1):179–186. doi: 10.1128/aem.49.1.179-186.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKinley V. L., Vestal J. R. Effects of Acid on plant litter decomposition in an arctic lake. Appl Environ Microbiol. 1982 May;43(5):1188–1195. doi: 10.1128/aem.43.5.1188-1195.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. T., Crawford R. L. Methane production in Minnesota peatlands. Appl Environ Microbiol. 1984 Jun;47(6):1266–1271. doi: 10.1128/aem.47.6.1266-1271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
