Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Sep;50(3):573–579. doi: 10.1128/aem.50.3.573-579.1985

Glucose Catabolism in Strains of Acidophilic, Heterotrophic Bacteria

Kay L Shuttleworth 1, Richard F Unz 1,*, Paul L Wichlacz 1,
PMCID: PMC238671  PMID: 16346876

Abstract

Pathways of glucose catabolism, potentially operational in six strains of obligately aerobic, acidophilic bacteria, including Acidiphilium cryptum strain Lhet2, were investigated by short-term radiorespirometry and enzyme assays. Short-term radiorespirometry was conducted at pH 3.0 with specifically labeled [14C]glucose. The high rate and yield of C-1 oxidized to CO2 indicated that the Entner-Doudoroff, pentose phosphate, or both pathways were operational in all strains. Apparent nonequivalent yields of CO2 from C-1 and estimated CO2 from C-4 (C-1 > C-4) were suggestive of simultaneous glucose catabolism by both pathways in all strains tested. Variation in the relative contribution of the two pathways of glucose catabolism appears to account for observed strain differences. Calculation of the actual percent pathway participation was not feasible. Enzyme assays were completed with crude extracts of glucose-grown cells to substantiate the results obtained by radiorespirometry. The key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase) and the Entner-Doudoroff pathway (2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrase) were present in all strains examined (PW2, Lhet2, KLB, OP, and QBP). However, none of the strains exhibited detectable levels of the key enzyme of the Embden-Meyerhof-Parnas pathway, 6-phosphofructokinase. All strains contained glucose-6-phosphate dehydrogenase and fructose bisphosphate aldolase. The results of the enzyme study supported the contention that the pentose phosphate and Entner-Doudoroff pathways are operational for glucose catabolism in the acidophilic heterotrophs, and that the Embden-Meyerhof-Parnas pathway is apparently absent.

Full text

PDF
573

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkesteyn G. J., de Bont J. A. Thiobacillus acidophilus: a study of its presence in Thiobacillus ferrooxidans cultures. Can J Microbiol. 1980 Sep;26(9):1057–1065. doi: 10.1139/m80-178. [DOI] [PubMed] [Google Scholar]
  2. Arthur L. O., Bulla L. A., Jr, Julian G. S., Nakamura L. K. Carbohydrate metabolism in Agrobacterium tumefaciens. J Bacteriol. 1973 Oct;116(1):304–313. doi: 10.1128/jb.116.1.304-313.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barros M. E., Rawlings D. E., Woods D. R. Mixotrophic Growth of a Thiobacillus ferrooxidans Strain. Appl Environ Microbiol. 1984 Mar;47(3):593–595. doi: 10.1128/aem.47.3.593-595.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumann L., Baumann P. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. II. Properties of 1-phosphofructokinase and 6-phosphofructokinase. Arch Microbiol. 1975 Nov 7;105(3):241–248. doi: 10.1007/BF00447142. [DOI] [PubMed] [Google Scholar]
  5. Baumann P., Baumann L. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch Microbiol. 1975 Nov 7;105(3):225–240. doi: 10.1007/BF00447141. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Conrad R., Schlegel H. G. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Arch Microbiol. 1977 Feb 4;112(1):39–48. doi: 10.1007/BF00446652. [DOI] [PubMed] [Google Scholar]
  8. Duncombe W. G. Short-term radiorespirometry of cell suspensions. Biochem J. 1974 Dec;144(3):487–496. doi: 10.1042/bj1440487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harrison A. P., Jr, Jarvis B. W., Johnson J. L. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology. J Bacteriol. 1980 Jul;143(1):448–454. doi: 10.1128/jb.143.1.448-454.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harrison A. P., Jr The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol. 1984;38:265–292. doi: 10.1146/annurev.mi.38.100184.001405. [DOI] [PubMed] [Google Scholar]
  11. KATZ J., WOOD H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1963 Feb;238:517–523. [PubMed] [Google Scholar]
  12. Kemerer V. R., Griffin C. C., Brand L. Phosphofructokinase from Escherichia coli. Methods Enzymol. 1975;42:91–98. doi: 10.1016/0076-6879(75)42099-7. [DOI] [PubMed] [Google Scholar]
  13. Kersters K., De Ley J. The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie Van Leeuwenhoek. 1968;34(4):393–408. doi: 10.1007/BF02046462. [DOI] [PubMed] [Google Scholar]
  14. Matin A., Rittenberg S. C. Enzymes of carbohydrate metabolism in Thiobacillus species. J Bacteriol. 1971 Jul;107(1):179–186. doi: 10.1128/jb.107.1.179-186.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGill D. J., Dawes E. A. Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J. 1971 Dec;125(4):1059–1068. doi: 10.1042/bj1251059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palumbo S. A., Witter L. D. The influence of temperature on the pathways of glucose catabolism in Pseudomonas fluorescens. Can J Microbiol. 1969 Sep;15(9):995–1000. doi: 10.1139/m69-178. [DOI] [PubMed] [Google Scholar]
  17. Raj H. D., Paveglio K. A. Contributing carbohydrate catabolic pathways in Cyclobacterium marinus. J Bacteriol. 1983 Jan;153(1):335–339. doi: 10.1128/jb.153.1.335-339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tabita R., Lundgren D. G. Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. J Bacteriol. 1971 Oct;108(1):334–342. doi: 10.1128/jb.108.1.334-342.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Van Dijken J. P., Quayle J. R. Fructose metabolism in four Pseudomonas species. Arch Microbiol. 1977 Sep 28;114(3):281–286. doi: 10.1007/BF00446874. [DOI] [PubMed] [Google Scholar]
  20. Wichlacz P. L., Unz R. F. Acidophilic, heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol. 1981 May;41(5):1254–1261. doi: 10.1128/aem.41.5.1254-1261.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wood A. P., Kelly D. P., Thurston C. F. Simultaneous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2. Arch Microbiol. 1977 Jun 20;113(3):265–274. doi: 10.1007/BF00492034. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES