Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Sep;50(3):685–689. doi: 10.1128/aem.50.3.685-689.1985

Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition.

H M Walker-Caprioglio, R J Rodriguez, L W Parks
PMCID: PMC238689  PMID: 3907500

Abstract

Ethanol caused altered mobility of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in plasma membrane preparations of Saccharomyces cerevisiae. Because lipids had been shown to protect yeast cells against ethanol toxicity, sterols, fatty acids, proteins, and combinations of these were tested; however, protection from growth inhibition was not seen. Ethanol-induced, prolonged lag periods and diminished growth rates in S. cerevisiae were reduced by an autoconditioning of the medium by the inoculum.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayres W. A., Small E. W., Isenberg I. A computerized fluorescence anisotropy spectrometer. Anal Biochem. 1974 Apr;58(2):361–367. doi: 10.1016/0003-2697(74)90203-6. [DOI] [PubMed] [Google Scholar]
  2. Chin J. H., Goldstein D. B. Cholesterol blocks the disordering effects of ethanol in biomembranes. Lipids. 1984 Dec;19(12):929–935. doi: 10.1007/BF02534728. [DOI] [PubMed] [Google Scholar]
  3. Dolan R., Robertson A. The effect of conditioning the medium in DRosophila, in relation to frequency-dependent selection. Heredity (Edinb) 1975 Dec;35(3):311–316. doi: 10.1038/hdy.1975.102. [DOI] [PubMed] [Google Scholar]
  4. Dombek K. M., Ingram L. O. Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol. 1984 Jan;157(1):233–239. doi: 10.1128/jb.157.1.233-239.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellem K. A., Kay G. F. The nature of conditioning nutrients for human malignant melanoma cultures. J Cell Sci. 1983 Jul;62:249–266. doi: 10.1242/jcs.62.1.249. [DOI] [PubMed] [Google Scholar]
  6. Ingram L. O., Vreeland N. S. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol. 1980 Nov;144(2):481–488. doi: 10.1128/jb.144.2.481-488.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Li G. C. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol. 1983 May;115(2):116–122. doi: 10.1002/jcp.1041150203. [DOI] [PubMed] [Google Scholar]
  8. McLean-Bowen C. A., Parks L. W. Corresponding changes in kynurenine hydroxylase activity, membrane fluidity, and sterol composition in Saccharomyces cerevisiae mitochondria. J Bacteriol. 1981 Mar;145(3):1325–1333. doi: 10.1128/jb.145.3.1325-1333.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nes W. R., Sekula B. C., Nes W. D., Adler J. H. The functional importance of structural features of ergosterol in yeast. J Biol Chem. 1978 Sep 10;253(17):6218–6225. [PubMed] [Google Scholar]
  10. Ohta K., Hayashida S. Role of tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts. Appl Environ Microbiol. 1983 Oct;46(4):821–825. doi: 10.1128/aem.46.4.821-825.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pineda M. H., Dooley M. P., Martin P. A. Long-term study on the effects of electroejaculation on seminal characteristics of the domestic cat. Am J Vet Res. 1984 May;45(5):1038–1041. [PubMed] [Google Scholar]
  12. Plesset J., Palm C., McLaughlin C. S. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1340–1345. doi: 10.1016/0006-291x(82)92147-7. [DOI] [PubMed] [Google Scholar]
  13. Taylor F. R., Parks L. W. Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1437–1445. doi: 10.1016/s0006-291x(80)80058-1. [DOI] [PubMed] [Google Scholar]
  14. Thomas D. S., Hossack J. A., Rose A. H. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol. 1978 Jun 26;117(3):239–245. doi: 10.1007/BF00738541. [DOI] [PubMed] [Google Scholar]
  15. Thomas D. S., Rose A. H. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Arch Microbiol. 1979 Jul;122(1):49–55. doi: 10.1007/BF00408045. [DOI] [PubMed] [Google Scholar]
  16. Wattenberg B. W., Silbert D. F. Sterol partitioning among intracellular membranes. Testing a model for cellular sterol distribution. J Biol Chem. 1983 Feb 25;258(4):2284–2289. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES