Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Dec;50(6):1404–1408. doi: 10.1128/aem.50.6.1404-1408.1985

Effects of Low-Temperature Acclimation and Oxygen Stress on Tocopheron Production in Euglena gracilis Z

Bruce A Ruggeri 1,†,*, Rodney J H Gray 1,, Thomas R Watkins 1,§, Richard I Tomlins 1,
PMCID: PMC238771  PMID: 16346941

Abstract

The effects of low-temperature acclimation and oxygen stress on tocopheron production were examined in the unicellular phytoflagellate Euglena gracilis Z. Cells were cultured photoheterotrophically at 27.5 ± 1°C with 5% carbon dioxide-95% air and 740 microeinsteins m−2 s−1 (photosynthetically active radiation) and served as controls. Low-temperature acclimation (12.5 ± 1°C) and high-oxygen stress (5% carbon dioxide-95% oxygen) were individually examined in the mass culturing of the algae. Chromatographic analyses demonstrated a six-to sevenfold enhancement of α-tocopherol production in temperature-stressed cells, along with a concomitant decline in the levels of α-tocotrienol and the absence of other tocopherol homologs. Oxygen-stressed cultures demonstrated the presence of high levels of α-tocopherylquinone; α-tocopheron and its homologs and precursors were absent or declined markedly. These findings are discussed in terms of the feasibility of microbial production of natural tocopherols. In addition, these results lend themselves to speculation regarding the biological role(s) of tocopherols as antioxidants and free radical scavengers in reducing photo-induced oxidative damage or lipid peroxidation toxicities or both in photosynthetically active E. gracilis Z.

Full text

PDF
1404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. CIEGLER A., NELSON G. E., HALL H. H. Microbiological production of carotenoids. VII. Influence of hydrocarbon on carotenogenesis by mated cultures of Blakeslea trispora. Appl Microbiol. 1962 Mar;10:132–136. doi: 10.1128/am.10.2.132-136.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GREEN J., PRICE S. A., GARE L. Tocopherols in micro-organisms. Nature. 1959 Oct 24;184(Suppl 17):1339–1339. doi: 10.1038/1841339a0. [DOI] [PubMed] [Google Scholar]
  4. Giasuddin A. S., Diplock A. T. The influence of vitamin E on membrane lipids of mouse fibroblasts in culture. Arch Biochem Biophys. 1981 Aug;210(1):348–362. doi: 10.1016/0003-9861(81)90198-3. [DOI] [PubMed] [Google Scholar]
  5. HULANICKA D., ERWIN J., BLOCH K. LIPID METABOLISM OF EUGLENA GRACILIS. J Biol Chem. 1964 Sep;239:2778–2787. [PubMed] [Google Scholar]
  6. HUMPHREY A. E., DEINDOERFER F. H. Microbiological process report. 1960 Fermentation Process Review. Appl Microbiol. 1962 Jul;10:359–385. doi: 10.1128/am.10.4.359-385.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hughes P. E., Tove S. B. Occurrence of alpha-tocopherolquinone and alpha-tocopherolquinol in microorganisms. J Bacteriol. 1982 Sep;151(3):1397–1402. doi: 10.1128/jb.151.3.1397-1402.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Korn E. D. The fatty acids of Euglena gracilis. J Lipid Res. 1964 Jul;5(3):352–362. [PubMed] [Google Scholar]
  9. Lucy J. A. Functional and structural aspects of biological membranes: a suggested structural role for vitamin E in the control of membrane permeability and stability. Ann N Y Acad Sci. 1972 Dec 18;203:4–11. doi: 10.1111/j.1749-6632.1972.tb27849.x. [DOI] [PubMed] [Google Scholar]
  10. ROSENBERG A. A COMPARISON OF LIPID PATTERNS IN PHOTOSYNTHESIZING AND NONPHOTOSYNTHESIZING CELLS OF EUGLENA GRACILIS. Biochemistry. 1963 Sep-Oct;2:1148–1154. doi: 10.1021/bi00905a042. [DOI] [PubMed] [Google Scholar]
  11. Soll J., Kemmerling M., Schultz G. Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys. 1980 Oct 15;204(2):544–550. doi: 10.1016/0003-9861(80)90066-1. [DOI] [PubMed] [Google Scholar]
  12. Tappel A. L. Vitamin E and selenium protection from in vivo lipid peroxidation. Ann N Y Acad Sci. 1980;355:18–31. doi: 10.1111/j.1749-6632.1980.tb21324.x. [DOI] [PubMed] [Google Scholar]
  13. Thomas G., Threlfall D. R. Synthesis of polyprenyltolouquinols from homogentisate and polyprenyl pyrophosphates in particulate fractions of Euglena and sugar beet. Biochem J. 1974 Aug;142(2):437–440. doi: 10.1042/bj1420437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Threlfall D. R., Goodwin T. W. Nature, intracellular distribution and formation of terpenoid quinones in Euglena gracilis. Biochem J. 1967 May;103(2):573–588. doi: 10.1042/bj1030573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES