Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Mar;51(3):481–486. doi: 10.1128/aem.51.3.481-486.1986

Isolation and Characterization of Coproporphyrin Produced by Four Subspecies of Bacillus thuringiensis

R L Harms 1, D R Martinez 1,, V M Griego 1,*
PMCID: PMC238905  PMID: 16347008

Abstract

It was found by using spectrophotometric, spectrofluorometric, and high-pressure liquid chromatography that four subspecies of Bacillus thuringiensis produce coproporphyrin. The porphyrin isomer was identified as coproporphyrin I for B. thuringiensis subsp. kurstaki (HD1). The porphyrin was isolated both from spores and from a variety of spent growth media. The quantity of porphyrin released by each Bacillus subspecies differed. The rank order of porphyrin production follows: B. thuringiensis subsp. kurstaki HD1 > B. thuringiensis subsp. thuringiensis HD27 > B. thuringiensis subsp. thuringiensis HD41 > B. thuringiensis subsp. darmstadiensis HD199.

Full text

PDF
481

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avissar Y. J., Nadler K. D. Stimulation of tetrapyrrole formation in Rhizobium japonicum by restricted aeration. J Bacteriol. 1978 Sep;135(3):782–789. doi: 10.1128/jb.135.3.782-789.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cox R., Charles H. P. Porphyrin-accumulating mutants of Escherichia coli. J Bacteriol. 1973 Jan;113(1):122–132. doi: 10.1128/jb.113.1.122-132.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dalhammar G., Steiner H. Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur J Biochem. 1984 Mar 1;139(2):247–252. doi: 10.1111/j.1432-1033.1984.tb08000.x. [DOI] [PubMed] [Google Scholar]
  4. Griego V. M., Spence K. D. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol. 1978 May;35(5):906–910. doi: 10.1128/aem.35.5.906-910.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hill R. H., Jr, Bailey S. L., Needham L. L. Development and utilization of a procedure for measuring urinary porphyrins by high-performance liquid chromatography. J Chromatogr. 1982 Nov 12;232(2):251–260. doi: 10.1016/s0378-4347(00)84165-1. [DOI] [PubMed] [Google Scholar]
  6. Kjeldstad B., Johnsson A., Sandberg S. Influence of pH on porphyrin production in Propionibacterium acnes. Arch Dermatol Res. 1984;276(6):396–400. doi: 10.1007/BF00413361. [DOI] [PubMed] [Google Scholar]
  7. Lee W. L., Shalita A. R., Poh-Fitzpatrick M. B. Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum. J Bacteriol. 1978 Feb;133(2):811–815. doi: 10.1128/jb.133.2.811-815.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nickerson K. W., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):124–128. doi: 10.1128/am.28.1.124-128.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nickerson K. W., De Pinto J., Bulla L. A., Jr Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle. J Bacteriol. 1974 Jan;117(1):321–323. doi: 10.1128/jb.117.1.321-323.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sandberg S., Romslo I., Høvding G., Bjørndal T. Porphyrin-induced photodamage as related to the subcellular localization of the porphyrins. Acta Derm Venereol Suppl (Stockh) 1982;100:75–80. [PubMed] [Google Scholar]
  12. Spikes J. D. Porphyrins and related compounds as photodynamic sensitizers. Ann N Y Acad Sci. 1975 Apr 15;244:496–508. doi: 10.1111/j.1749-6632.1975.tb41550.x. [DOI] [PubMed] [Google Scholar]
  13. Tait G. H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J. 1973 Feb;131(2):389–403. doi: 10.1042/bj1310389. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES