Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Mar;51(3):640–646. doi: 10.1128/aem.51.3.640-646.1986

Sulfur regulation of heparinase and sulfatases in Flavobacterium heparinum.

E C Cerbelaud, L J Conway, P M Galliher, R S Langer, C L Cooney
PMCID: PMC238932  PMID: 3963813

Abstract

Sulfur regulation of heparinase synthesis and sulfatase synthesis was studied in Flavobacterium heparinum. Heparinase synthesis was strongly repressed by sulfate and L-cysteine, while the activity of this enzyme showed little or no inhibition by these compounds. Heparinase was synthesized in the absence of heparin when L-methionine was used as the sole sulfur source. The sulfatases produced by F. heparinum, which include the sulfatases involved in heparin catabolism, were also studied. At least some of the sulfatase activity was regulated by sulfur compounds in a manner similar to heparinase regulation. L-Cysteic acid and taurine were not suitable sulfur sources to support the growth of F. heparinum.

Full text

PDF
640

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi T., Murooka Y., Harada T. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes. J Bacteriol. 1975 Jan;121(1):29–35. doi: 10.1128/jb.121.1.29-35.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burns G. R., Wynn C. H. Differential repression of arylsulphatase synthesis in Aspergillus oryzae. Biochem J. 1977 Sep 15;166(3):415–420. doi: 10.1042/bj1660415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen B. L., Morris J. E., Drucker H. Regulation of two extracellular proteases of Neurospora crassa by induction and by carbon-nitrogen and sulfur-metabolite repression. Arch Biochem Biophys. 1975 Jul;169(1):324–330. doi: 10.1016/0003-9861(75)90347-1. [DOI] [PubMed] [Google Scholar]
  5. Cohen B. L. Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J Gen Microbiol. 1973 Dec;79(2):311–320. doi: 10.1099/00221287-79-2-311. [DOI] [PubMed] [Google Scholar]
  6. Dietrich C. P. Enzymic degradation of heparin. A sulphamidase and a sulphoesterase from Flavobacterium heparinum. Biochem J. 1969 Jan;111(1):91–95. doi: 10.1042/bj1110091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietrich C. P., Silva M. E., Michelacci Y. M. Sequential degradation of heparin in Flavobacterium heparinum. Purification and properties of five enzymes involved in heparin degradation. J Biol Chem. 1973 Sep 25;248(18):6408–6415. [PubMed] [Google Scholar]
  8. Dietrich C. P. Studies on the induction of heparin-degrading enzymes in Flavobacterium heparinum. Biochemistry. 1969 Aug;8(8):3342–3347. doi: 10.1021/bi00836a031. [DOI] [PubMed] [Google Scholar]
  9. Dodgson K. S., Rose F. A. Observations on the biological roles of sulphatases. Ciba Found Symp. 1979;(72):163–176. doi: 10.1002/9780470720554.ch10. [DOI] [PubMed] [Google Scholar]
  10. Fitzgerald J. W., Payne W. J. The regulation of arylsulphatase formation in Pseudomonas C 12 B. Microbios. 1972 Sep-Oct;6(22):147–156. [PubMed] [Google Scholar]
  11. Galliher P. M., Cooney C. L., Langer R., Linhardt R. J. Heparinase production by Flavobacterium heparinum. Appl Environ Microbiol. 1981 Feb;41(2):360–365. doi: 10.1128/aem.41.2.360-365.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HARADA T., SPENCER B. The effect of sulphate assimilation on the induction of arylsulphatase synthesis in fungi. Biochem J. 1962 Jan;82:148–156. doi: 10.1042/bj0820148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanson M. A., Marzluf G. A. Regulation of a sulfur-controlled protease in Neurospora crassa. J Bacteriol. 1973 Nov;116(2):785–789. doi: 10.1128/jb.116.2.785-789.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harada T., Spencer B. Repression and induction of arylsulphatase synthesis in Aerobacter aerogenes. Biochem J. 1964 Nov;93(2):373–378. doi: 10.1042/bj0930373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill D. W., Walters F. H., Wilson T. D., Stuart J. D. High performance liquid chromatographic determination of amino acids in the picomole range. Anal Chem. 1979 Jul;51(8):1338–1341. doi: 10.1021/ac50044a055. [DOI] [PubMed] [Google Scholar]
  16. Langer R., Linhardt R. J., Hoffberg S., Larsen A. K., Cooney C. L., Tapper D., Klein M. An enzymatic system for removing heparin in extracorporeal therapy. Science. 1982 Jul 16;217(4556):261–263. doi: 10.1126/science.7089564. [DOI] [PubMed] [Google Scholar]
  17. Linhardt R. J., Cooney C. L., Tapper D., Zannetos C. A., Larsen A. K., Langer R. An immobilized microbial heparinase for blood deheparinization. Appl Biochem Biotechnol. 1984 Feb;9(1):41–55. doi: 10.1007/BF02798373. [DOI] [PubMed] [Google Scholar]
  18. Linhardt R. J., Fitzgerald G. L., Cooney C. L., Langer R. Mode of action of heparin lyase on heparin. Biochim Biophys Acta. 1982 Apr 3;702(2):197–203. doi: 10.1016/0167-4838(82)90503-9. [DOI] [PubMed] [Google Scholar]
  19. Linhardt R. J., Grant A., Cooney C. L., Langer R. Differential anticoagulant activity of heparin fragments prepared using microbial heparinase. J Biol Chem. 1982 Jul 10;257(13):7310–7313. [PubMed] [Google Scholar]
  20. Linker A., Hovingh P. Isolation and characterization of oligosaccharides obtained from heparin by the action of heparinase. Biochemistry. 1972 Feb 15;11(4):563–568. doi: 10.1021/bi00754a013. [DOI] [PubMed] [Google Scholar]
  21. Murooka Y., Harada T. Regulation of derepressed synthesis of arylsulfatase by tyramine oxidase in Salmonella typhimurium. J Bacteriol. 1981 Feb;145(2):796–802. doi: 10.1128/jb.145.2.796-802.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ogrydziak D. M., Demain A. L., Tannenbaum S. R. Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta. 1977 Apr 27;497(2):525–538. doi: 10.1016/0304-4165(77)90209-4. [DOI] [PubMed] [Google Scholar]
  23. RAMMLER D. H., GRADO C., FOWLER L. R. SULFUR METABOLISM OF AEROBACTER AEROGENES. I. A REPRESSIBLE SULFATASE. Biochemistry. 1964 Feb;3:224–230. doi: 10.1021/bi00890a014. [DOI] [PubMed] [Google Scholar]
  24. Yamada T., Murooka Y., Harada T. Comparative immunological studies on arylsulfatase in bacteria of the family Enterobacteriaceae: occurrence of latent arylsulfatase protein regulated by sulfur compounds and tyramine. J Bacteriol. 1978 Feb;133(2):536–541. doi: 10.1128/jb.133.2.536-541.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES