Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Apr;51(4):746–752. doi: 10.1128/aem.51.4.746-752.1986

Production and Properties of Xylan-Degrading Enzymes from Cellulomonas uda

Peter Rapp 1,*, Fritz Wagner 1
PMCID: PMC238959  PMID: 16347038

Abstract

Xylan degradation and production of β-xylanase and β-xylosidase activities were studied in cultures of Cellulomonas uda grown on purified xylan from birchwood. β-Xylanase activity was found to be associated with the cells, although in various degrees. The formation of β-xylanase activity was induced by xylotriose and repressed by xylose. β-Xylosidase activity was cell bound. Both constitutive and inducible β-xylosidase activities were suggested. β-Xylanase and β-xylosidase activities were inhibited competitively by xylose. β-Xylanase activity had a pronounced optimum pH of 5.8, whereas the optimum pH of β-xylosidase activity ranged from 5.4 to 6.1. The major products of xylan degradation by a crude preparation of β-xylanase activity, in decreasing order of amount, were xylobiose, xylotriose, xylose, and small amounts of xylotetraose. This pattern suggests that β-xylanase activity secreted by C. uda is of the endosplitting type. Supernatants of cultures grown on cellulose showed not only β-glucanase but also β-xylanase activity. The latter could be attributed to an endo-1,4-β-glucanase activity which had a low β-xylanase activity.

Full text

PDF
746

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Comtat J., Joseleau J. P., Bosso C., Barnoud F. Characterization of structurally similar neutral and acidic tetrasaccharides obtained from the enzymic hydrolyzate of a 4-O-methyl-D-glucurono-D-xylan. Carbohydr Res. 1974 Dec;38:217–224. doi: 10.1016/s0008-6215(00)82352-6. [DOI] [PubMed] [Google Scholar]
  2. Dehority B. A. Hemicellulose degradation by rumen bacteria. Fed Proc. 1973 Jul;32(7):1819–1825. [PubMed] [Google Scholar]
  3. Dekker R. F., Richards G. N. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohydr Chem Biochem. 1976;32:277–352. doi: 10.1016/s0065-2318(08)60339-x. [DOI] [PubMed] [Google Scholar]
  4. Deleyn F., Claeyssens M., Van Beeumen J., De Bruyne C. K. Purification and properties of beta-xylosidase from Penicillium wortmanni. Can J Biochem. 1978 Jan;56(1):43–50. doi: 10.1139/o78-007. [DOI] [PubMed] [Google Scholar]
  5. Gorbacheva I. V., Rodionova N. A. Studies on xylan degrading enzymes. I. Purification and characterization of endo-1,4-beta-xylanase from Aspergillus niger str. 14. Biochim Biophys Acta. 1977 Sep 15;484(1):79–93. doi: 10.1016/0005-2744(77)90114-0. [DOI] [PubMed] [Google Scholar]
  6. Gorbacheva I. V., Rodionova N. A. Studies on xylan-degrading enzymes. II. Action pattern of endo-1,4-beta-xylanase from Aspergillus niger str. 14 on xylan and xylooligosaccharides. Biochim Biophys Acta. 1977 Sep 15;484(1):94–102. doi: 10.1016/0005-2744(77)90115-2. [DOI] [PubMed] [Google Scholar]
  7. HOWARD B. H., JONES G., PURDOM M. R. The pentosanases of some rumen bacteria. Biochem J. 1960 Jan;74:173–180. doi: 10.1042/bj0740173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hurst P. L., Sullivan P. A., Shepherd M. G. Substrate specificity and mode of action of a cellulase from Aspergillus niger. Biochem J. 1978 Feb 1;169(2):389–395. doi: 10.1042/bj1690389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. John M., Schmidt B., Schmidt J. Purification and some properties of five endo-1,4-beta-D-xylanases and a beta-D-xylosidase produced by a strain of Aspergillus niger. Can J Biochem. 1979 Feb;57(2):125–134. doi: 10.1139/o79-016. [DOI] [PubMed] [Google Scholar]
  10. Kanda T., Wakabayashi K., Nisizawa K. Xylanase activity of an endo-cellulase of carboxymethyl-cellulase type from Irpex lacteus (Polyporus tulipiferae). J Biochem. 1976 May;79(5):989–995. doi: 10.1093/oxfordjournals.jbchem.a131166. [DOI] [PubMed] [Google Scholar]
  11. Kersters-Hilderson H., Claeyssens M., Van Doorslaer E., Saman E., De Bruyne C. K. beta-D-xylosidase from Bacillus pumilus. Methods Enzymol. 1982;83:631–639. doi: 10.1016/0076-6879(82)83062-0. [DOI] [PubMed] [Google Scholar]
  12. Kersters-Hilderson H., Loontiens F. G., Claeyssens M., De Bruyne C. K. Partial purification and properties of an induced beta-D-xylosidase of Bacillus pumilus 12. Eur J Biochem. 1969 Jan;7(3):434–441. doi: 10.1111/j.1432-1033.1969.tb19628.x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Paice M. G., Jurasek L., Carpenter M. R., Smillie L. B. Production, characterization, and partial amino acid sequence of xylanase A from Schizophyllum commune. Appl Environ Microbiol. 1978 Dec;36(6):802–808. doi: 10.1128/aem.36.6.802-808.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Panbangred W., Kawaguchi O., Tomita T., Shinmyo A., Okada H. Isolation of two beta-xylosidase genes of Bacillus pumilus and comparison of their gene products. Eur J Biochem. 1984 Jan 16;138(2):267–273. doi: 10.1111/j.1432-1033.1984.tb07911.x. [DOI] [PubMed] [Google Scholar]
  16. Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev. 1977 Sep;41(3):711–753. doi: 10.1128/br.41.3.711-753.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rodionova N. A., Tavobilov I. M., Bezborodov A. M. beta-Xylosidase from Aspergillus niger 15: purification and properties. J Appl Biochem. 1983 Aug-Oct;5(4-5):300–312. [PubMed] [Google Scholar]
  18. Roncero M. I. Genes controlling xylan utilization by Bacillus subtilis. J Bacteriol. 1983 Oct;156(1):257–263. doi: 10.1128/jb.156.1.257-263.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salyers A. A., Gherardini F., O'Brien M. Utilization of xylan by two species of human colonic Bacteroides. Appl Environ Microbiol. 1981 Apr;41(4):1065–1068. doi: 10.1128/aem.41.4.1065-1068.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saman E., Claeyssens M., de Bruyne C. K. Study of the sulfhydryl groups of beta-D-xylosidase from Bacillus pumilus. Eur J Biochem. 1978 Apr;85(1):301–307. doi: 10.1111/j.1432-1033.1978.tb12239.x. [DOI] [PubMed] [Google Scholar]
  21. Shikata S., Nsizawa K. Purification and properties of an exo-cellulase component of novel type from Trichoderma miride. J Biochem. 1975 Sep;78(3):499–512. doi: 10.1093/oxfordjournals.jbchem.a130934. [DOI] [PubMed] [Google Scholar]
  22. Stoppok W., Rapp P., Wagner F. Formation, Location, and Regulation of Endo-1,4-beta-Glucanases and beta-Glucosidases from Cellulomonas uda. Appl Environ Microbiol. 1982 Jul;44(1):44–53. doi: 10.1128/aem.44.1.44-53.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Gussem R. L., Aerts G. M., Claeyssens M., de Bruyne C. K. Purification and properties of an induced beta-D-glucosidase from stachybotrys atra. Biochim Biophys Acta. 1978 Jul 7;525(1):142–153. doi: 10.1016/0005-2744(78)90208-5. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES