Abstract
The kinetics of adhesion of Streptococcus sanguis CH3 from suspension to polymers with different surface free energies were studied by using three bacterial concentrations (2.5 X 10(7), 2.5 X 10(8), and 2.5 X 10(9) cells per ml-1). Substratum surface free energies (gamma s) ranged from 18 to 120 erg cm-2. The kinetics of bacterial adhesion to these surfaces showed a typical two-step adhesion process, indicating an equilibrium in both steps. In the initial adhesion step (step 1), low equilibrium numbers of adhering bacteria were counted on substrata with surface free energies lower than 55 erg cm-2. A maximal number adhered on substrata with higher surface free energies. At the lowest bacterial concentration tested, the highest number of bacteria were found on substrata with a surface free energy around 55 erg cm-2. For each substratum, step 2 started after a characteristic time interval tau, being short (30 min) for gamma s less than 50 and long (120 min) for gamma s greater than 50 erg cm-2. The relationship between the substratum surface free energy and the number of bacteria adhering at equilibrium after step 2 was similar to, although less distinct than, that during step 1 with a slight indication of a bioadhesive minimum around gamma s = 35 erg cm-2. The results are indicative of a two-step adhesion model, in which step 1 is controlled by macroscopic substratum properties.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Absolom D. R., Lamberti F. V., Policova Z., Zingg W., van Oss C. J., Neumann A. W. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 1983 Jul;46(1):90–97. doi: 10.1128/aem.46.1.90-97.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baier R. E. Comments on cell adhesion to biomaterial surfaces: conflicts and concerns. J Biomed Mater Res. 1982 Mar;16(2):173–175. doi: 10.1002/jbm.820160210. [DOI] [PubMed] [Google Scholar]
- Baier R. E., Meyer A. E., Natiella J. R., Natiella R. R., Carter J. M. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res. 1984 Apr;18(4):337–355. doi: 10.1002/jbm.820180404. [DOI] [PubMed] [Google Scholar]
- Baier R. E. Surface chemical factors presaging bioadhesive events. Ann N Y Acad Sci. 1983;416:34–57. doi: 10.1111/j.1749-6632.1983.tb35177.x. [DOI] [PubMed] [Google Scholar]
- Busscher H. J., Weerkamp A. H., van der Mei H. C., van Pelt A. W., de Jong H. P., Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol. 1984 Nov;48(5):980–983. doi: 10.1128/aem.48.5.980-983.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dexter S. C., Sullivan J. D., Williams J., Watson S. W. Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl Microbiol. 1975 Aug;30(2):298–308. doi: 10.1128/am.30.2.298-308.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friberg S. Colloidal phenomena encountered in the bacterial adhesion to the tooth surface. Swed Dent J. 1977;1(6):207–214. [PubMed] [Google Scholar]
- Neumann A. W., Absolom D. R., van Oss C. J., Zingg W. Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces. Cell Biophys. 1979 Mar;1(1):79–92. doi: 10.1007/BF02785058. [DOI] [PubMed] [Google Scholar]
- Neumann A. W., Francis D. W., Zingg W., van Oss C. J., Absolom D. R. Comments on the origin of platelet deposition and on cell adhesion to biomaterial surfaces. J Biomed Mater Res. 1983 Mar;17(2):375–381. doi: 10.1002/jbm.820170213. [DOI] [PubMed] [Google Scholar]
- Neumann A. W., Hum O. S., Francis D. W., Zingg W., van Oss C. J. Kinetic and thermodynamic aspects of platelet adhesion from suspension to various substrates. J Biomed Mater Res. 1980 Jul;14(4):499–509. doi: 10.1002/jbm.820140416. [DOI] [PubMed] [Google Scholar]
- Pringle J. H., Fletcher M. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol. 1983 Mar;45(3):811–817. doi: 10.1128/aem.45.3.811-817.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruckenstein E. Dynamics of cell deposition on surfaces. J Theor Biol. 1975 Jun;51(2):429–438. doi: 10.1016/0022-5193(75)90072-7. [DOI] [PubMed] [Google Scholar]
- Ruckenstein E., Srinivasan R. Comments on cell adhesion to biomaterial surfaces: the origin of saturation in platelet deposition--is it kinetic or thermodynamic? J Biomed Mater Res. 1982 Mar;16(2):169–172. doi: 10.1002/jbm.820160209. [DOI] [PubMed] [Google Scholar]
- Weiss L., Harlos J. P. Some speculations on the rate of adhesion of cells to coverslips. J Theor Biol. 1972 Oct;37(1):169–179. doi: 10.1016/0022-5193(72)90123-3. [DOI] [PubMed] [Google Scholar]
- van Pelt A. W., Weerkamp A. H., Uyen M. H., Busscher H. J., de Jong H. P., Arends J. Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies. Appl Environ Microbiol. 1985 May;49(5):1270–1275. doi: 10.1128/aem.49.5.1270-1275.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Valk P., van Pelt A. W., Busscher H. J., de Jong H. P., Wildevuur C. R., Arends J. Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblast spreading. J Biomed Mater Res. 1983 Sep;17(5):807–817. doi: 10.1002/jbm.820170508. [DOI] [PubMed] [Google Scholar]