Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 May;51(5):985–989. doi: 10.1128/aem.51.5.985-989.1986

Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa.

H E Reiling, U Thanei-Wyss, L H Guerra-Santos, R Hirt, O Käppeli, A Fiechter
PMCID: PMC238998  PMID: 3089151

Abstract

Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used.

Full text

PDF
985

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edwards J. R., Hayashi J. A. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys. 1965 Aug;111(2):415–421. doi: 10.1016/0003-9861(65)90204-3. [DOI] [PubMed] [Google Scholar]
  2. Guerra-Santos L., Käppeli O., Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol. 1984 Aug;48(2):301–305. doi: 10.1128/aem.48.2.301-305.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ito S., Honda H., Tomita F., Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions). J Antibiot (Tokyo) 1971 Dec;24(12):855–859. doi: 10.7164/antibiotics.24.855. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES