Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 May;51(5):1056–1062. doi: 10.1128/aem.51.5.1056-1062.1986

Growth of Methanogenic Bacteria in Pure Culture with 2-Propanol and Other Alcohols as Hydrogen Donors

Friedrich Widdel 1
PMCID: PMC239010  PMID: 16347050

Abstract

Two types of mesophilic, methanogenic bacteria were isolated in pure culture from anaerobic freshwater and marine mud with 2-propanol as the hydrogen donor. The freshwater strain (SK) was a Methanospirillum species, the marine, salt-requiring strain (CV), which had irregular coccoid cells, resembled Methanogenium sp. Stoichiometric measurements revealed formation of 1 mol of CH4 by CO2 reduction, with 4 mol of 2-propanol being converted to acetone. In addition to 2-propanol, the isolates used 2-butanol, H2, or formate but not methanol or polyols. Acetate did not serve as an energy substrate but was necessary as a carbon source. Strain CV also oxidized ethanol or 1-propanol to acetate or propionate, respectively; growth on the latter alcohols was slower, but final cell densities were about threefold higher than on 2-propanol. Both strains grew well in defined, bicarbonate-buffered, sulfide-reduced media. For cultivation of strain CV, additions of biotin, vitamin B12, and tungstate were necessary. The newly isolated strains are the first methanogens that were shown to grow in pure culture with alcohols other than methanol. Bioenergetic aspects of secondary and primary alcohol utilization by methanogens are discussed.

Full text

PDF
1056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boone D. R., Bryant M. P. Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems. Appl Environ Microbiol. 1980 Sep;40(3):626–632. doi: 10.1128/aem.40.3.626-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977 May;33(5):1162–1169. doi: 10.1128/aem.33.5.1162-1169.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  5. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol. 1967;59(1):20–31. doi: 10.1007/BF00406313. [DOI] [PubMed] [Google Scholar]
  6. Doddema H. J., Vogels G. D. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol. 1978 Nov;36(5):752–754. doi: 10.1128/aem.36.5.752-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones J. B., Stadtman T. C. Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J Bacteriol. 1977 Jun;130(3):1404–1406. doi: 10.1128/jb.130.3.1404-1406.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KUTZENOK A., ASCHNER M. Degenerative processes in a strain of Clostridium butylicum. J Bacteriol. 1952 Dec;64(6):829–836. doi: 10.1128/jb.64.6.829-836.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leonhardt U., Andreesen J. R. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol. 1977 Dec 15;115(3):277–284. doi: 10.1007/BF00446453. [DOI] [PubMed] [Google Scholar]
  10. Ljungdahl L. G., Andreesen J. R. Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium. FEBS Lett. 1975 Jun 15;54(2):279–282. doi: 10.1016/0014-5793(75)80092-5. [DOI] [PubMed] [Google Scholar]
  11. McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. Syntrophomonas wolfei gen. nov. sp. nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium. Appl Environ Microbiol. 1981 Apr;41(4):1029–1039. doi: 10.1128/aem.41.4.1029-1039.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reddy C. A., Bryant M. P., Wolin M. J. Characteristics of S organism isolated from Methanobacillus omelianskii. J Bacteriol. 1972 Feb;109(2):539–545. doi: 10.1128/jb.109.2.539-545.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reddy C. A., Bryant M. P., Wolin M. J. Ferredoxin-dependent conversion of acetaldehyde to acetate and H 2 in extracts of S organism. J Bacteriol. 1972 Apr;110(1):133–138. doi: 10.1128/jb.110.1.133-138.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STADTMAN T. C., BARKER H. A. Studies on the methane fermentation. VIII. Tracer experiments of fatty acid oxidation by methane bacteria. J Bacteriol. 1951 Jan;61(1):67–80. doi: 10.1128/jb.61.1.67-80.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schink B., Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol. 1983 Jun;45(6):1905–1913. doi: 10.1128/aem.45.6.1905-1913.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schink B., Ward J. C., Zeikus J. G. Microbiology of wetwood: importance of pectin degradation and clostridium species in living trees. Appl Environ Microbiol. 1981 Sep;42(3):526–532. doi: 10.1128/aem.42.3.526-532.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagner R., Andreesen J. R. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol. 1977 Sep 28;114(3):219–224. doi: 10.1007/BF00446865. [DOI] [PubMed] [Google Scholar]
  19. Widdel F., Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol. 1981 Jul;129(5):395–400. doi: 10.1007/BF00406470. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES