Abstract
Two-polymer aqueous-phase systems were used to compare via partitioning the surface properties of strains of the fish pathogen Aeromonas salmonicida which differed in their ability to produce the surface protein array known as the A layer and in their ability to produce smooth lipopolysaccharide. In these two-phase systems, biological particles are known to partition between the phases in a manner related to a variety of surface properties, including hydrophobicity, charge, and lipid composition. Both the presence of the superficial protein layer and the O polysaccharide chains of lipopolysaccharide were shown to play an important role in the partitioning behavior of A. salmonicida cells. The presence of the A layer, which is crucial to the virulence of A. salmonicida, appeared to decrease the surface hydrophilicity of this pathogen and to increase, in a somewhat specific manner, its surface affinity for fatty acid esters of polyethylene glycol. The ability of two-polymer aqueous-phase systems to differentially partition A. salmonicida cells on the basis of differences in surface architecture suggests their general usefulness for the analysis of surface properties important in bacterial virulence and should permit their use in the selection of strains and mutants exhibiting specific surface characteristics.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERTSSON P. A., BAIRD G. D. Counter-current distribution of cells. Exp Cell Res. 1962 Nov;28:296–322. doi: 10.1016/0014-4827(62)90285-9. [DOI] [PubMed] [Google Scholar]
- Chart H., Shaw D. H., Ishiguro E. E., Trust T. J. Structural and immunochemical homogeneity of Aeromonas salmonicida lipopolysaccharide. J Bacteriol. 1984 Apr;158(1):16–22. doi: 10.1128/jb.158.1.16-22.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eriksson E., Albertsson P. A., Johansson G. Hydrophobic surface properties of erythrocytes studied by affinity partition in aqueous two-phase systems. Mol Cell Biochem. 1976 Feb 16;10(2):123–128. doi: 10.1007/BF01742204. [DOI] [PubMed] [Google Scholar]
- Ishiguro E. E., Kay W. W., Ainsworth T., Chamberlain J. B., Austen R. A., Buckley J. T., Trust T. J. Loss of virulence during culture of Aeromonas salmonicida at high temperature. J Bacteriol. 1981 Oct;148(1):333–340. doi: 10.1128/jb.148.1.333-340.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karr L. J., Shafer S. G., Harris J. M., van Alstine J. M., Snyder R. S. Immuno-affinity partition of cells in aqueous polymer two-phase systems. J Chromatogr. 1986 Feb 28;354:269–282. doi: 10.1016/s0021-9673(01)87028-x. [DOI] [PubMed] [Google Scholar]
- Kay W. W., Buckley J. T., Ishiguro E. E., Phipps B. M., Monette J. P., Trust T. J. Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida. J Bacteriol. 1981 Sep;147(3):1077–1084. doi: 10.1128/jb.147.3.1077-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kihlström E., Magnusson K. E. Association with HeLa cells of LPS mutants of Salmonella typhimurium and Salmonella minnesota in relation to their physicochemical surface properties. Cell Biophys. 1980 Sep;2(3):177–189. doi: 10.1007/BF02790448. [DOI] [PubMed] [Google Scholar]
- Lindahl M., Faris A., Wadström T., Hjertén S. A new test based on 'salting out' to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta. 1981 Nov 5;677(3-4):471–476. doi: 10.1016/0304-4165(81)90261-0. [DOI] [PubMed] [Google Scholar]
- Magnusson K. E., Stendahl O., Tagesson C., Edebo L., Johansson G. The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interaction, as studied in aqueous polymer two-phase systems. Acta Pathol Microbiol Scand B. 1977 Jun;85(3):212–218. doi: 10.1111/j.1699-0463.1977.tb01698.x. [DOI] [PubMed] [Google Scholar]
- Munn C. B., Ishiguro E. E., Kay W. W., Trust T. J. Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infect Immun. 1982 Jun;36(3):1069–1075. doi: 10.1128/iai.36.3.1069-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phipps B. M., Trust T. J., Ishiguro E. E., Kay W. W. Purification and characterization of the cell surface virulent A protein from Aeromonas salmonicida. Biochemistry. 1983 Jun 7;22(12):2934–2939. doi: 10.1021/bi00281a023. [DOI] [PubMed] [Google Scholar]
- Reitherman R., Flanagan S. D., Barondes S. H. Electromotive phenomena in partition of erythrocytes in aqueous polymer two phase systems. Biochim Biophys Acta. 1973 Feb 28;297(2):193–202. doi: 10.1016/0304-4165(73)90065-2. [DOI] [PubMed] [Google Scholar]
- Sleytr U. B., Messner P. Crystalline surface layers on bacteria. Annu Rev Microbiol. 1983;37:311–339. doi: 10.1146/annurev.mi.37.100183.001523. [DOI] [PubMed] [Google Scholar]
- Smith H. Microbial surfaces in relation to pathogenicity. Bacteriol Rev. 1977 Jun;41(2):475–500. doi: 10.1128/br.41.2.475-500.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter H., Krob E. J., Brooks D. E. Membrane surface properties other than charge involved in cell separation by partition in polymer, aqueous two-phase systems. Biochemistry. 1976 Jul 13;15(14):2959–2964. doi: 10.1021/bi00659a004. [DOI] [PubMed] [Google Scholar]