Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Oct;52(4):607–611. doi: 10.1128/aem.52.4.607-611.1986

Biodelignification of Lemon Grass and Citronella Bagasse by White-Rot Fungi

C Rolz 1,*, R de Leon 1, M C de Arriola 1, S de Cabrera 1
PMCID: PMC239084  PMID: 16347155

Abstract

Twelve white-rot fungi were grown in solid-state culture on lemon grass (Cymbopogon citratus) and citronella (Cymbopogon winterianus) bagasse. The two lignocellulosic substrates had 11% permanganate lignin and a holocellulose fraction of 58%. After 5 to 6 weeks at 20°C, nine fungi produced a solid residue from lemon grass with a higher in vitro dry matter enzyme digestibility than the original bagasse; seven did the same for citronella. The best fungus for both substrates was Bondarzewia berkeleyi; it increased the in vitro dry matter enzyme digestibility to 22 and 24% for lemon grass and citronella, respectively. The increases were correlated with weight loss and lignin loss. All fungi decreased lignin contents: 36% of the original value for lemon grass and 28% for citronella. Practically all fungi showed a preference for hemicellulose over cellulose.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Lev S. S., Kirk T. K. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1981 Mar 31;99(2):373–378. doi: 10.1016/0006-291x(81)91755-1. [DOI] [PubMed] [Google Scholar]
  2. Bazin M. J., Saunders P. T., Prosser J. I. Models of microbial interactions in the soil. CRC Crit Rev Microbiol. 1976 May;4(4):463–498. doi: 10.3109/10408417609102306. [DOI] [PubMed] [Google Scholar]
  3. Eriksson K. E. Advances in microbial delignification. Biotechnol Adv. 1984;2(2):149–160. doi: 10.1016/0734-9750(84)90002-8. [DOI] [PubMed] [Google Scholar]
  4. Gaillard B. D., Richards G. N. Presence of soluble lignin-carbohydrate complexes in the bovine rumen. Carbohydr Res. 1975 Jun;42(1):135–145. doi: 10.1016/s0008-6215(00)84106-3. [DOI] [PubMed] [Google Scholar]
  5. Keyser P., Kirk T. K., Zeikus J. G. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol. 1978 Sep;135(3):790–797. doi: 10.1128/jb.135.3.790-797.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maccubbin A. E., Hodson R. E. Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl Environ Microbiol. 1980 Oct;40(4):735–740. doi: 10.1128/aem.40.4.735-740.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Reid I. D., Seifert K. A. Lignin degradation by Phanerochaete chrysosporium in hyperbaric oxygen. Can J Microbiol. 1980 Sep;26(9):1168–1171. doi: 10.1139/m80-194. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES