Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Oct;52(4):623–630. doi: 10.1128/aem.52.4.623-630.1986

Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes

John A Breznak 1,*, Jodi M Switzer 1
PMCID: PMC239087  PMID: 16347157

Abstract

Gut microbiota from Reticulitermes flavipes termites catalyzed an H2-dependent total synthesis of acetate from CO2. Rates of H2-CO2 acetogenesis in vitro were 1.11 ± 0.37 μmol of acetate g (fresh weight)−1 h−1 (equivalent to 4.44 ± 1.47 nmol termite−1 h−1) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H2 + CO2, as were small amounts of propionate, butyrate, and lactate-succinate. However, H2-CO2 formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH4 was formed from H2 + CO2 or from acetate. H2-CO2 acetogenesis was inhibited by O2, KCN, CHCl3, and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H2-CO2 acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H2-CO2 acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H2-CO2-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO2 reduction to acetate, rather than to CH4, represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.

Full text

PDF
623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Diekert G. B., Thauer R. K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol. 1978 Nov;136(2):597–606. doi: 10.1128/jb.136.2.597-606.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jones J. G., Simon B. M. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl Environ Microbiol. 1985 Apr;49(4):944–948. doi: 10.1128/aem.49.4.944-948.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Odelson D. A., Breznak J. A. Cellulase and Other Polymer-Hydrolyzing Activities of Trichomitopsis termopsidis, a Symbiotic Protozoan from Termites. Appl Environ Microbiol. 1985 Mar;49(3):622–626. doi: 10.1128/aem.49.3.622-626.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Odelson D. A., Breznak J. A. Nutrition and Growth Characteristics of Trichomitopsis termopsidis, a Cellulolytic Protozoan from Termites. Appl Environ Microbiol. 1985 Mar;49(3):614–621. doi: 10.1128/aem.49.3.614-621.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Odelson D. A., Breznak J. A. Volatile Fatty Acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol. 1983 May;45(5):1602–1613. doi: 10.1128/aem.45.5.1602-1613.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
  7. Phelps T. J., Zeikus J. G. Influence of pH on Terminal Carbon Metabolism in Anoxic Sediments from a Mildly Acidic Lake. Appl Environ Microbiol. 1984 Dec;48(6):1088–1095. doi: 10.1128/aem.48.6.1088-1095.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Potrikus C. J., Breznak J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4601–4605. doi: 10.1073/pnas.78.7.4601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schultz J. E., Breznak J. A. Cross-Feeding of Lactate Between Streptococcus lactis and Bacteroides sp. Isolated from Termite Hindguts. Appl Environ Microbiol. 1979 Jun;37(6):1206–1210. doi: 10.1128/aem.37.6.1206-1210.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schultz J. E., Breznak J. A. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1978 May;35(5):930–936. doi: 10.1128/aem.35.5.930-936.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
  13. Welty F. K., Wood H. G. Purification of the "corrinoid" enzyme involved in the synthesis of acetate by Clostridium thermoaceticum. J Biol Chem. 1978 Aug 25;253(16):5832–5838. [PubMed] [Google Scholar]
  14. Yamin M. A. Cellulose Metabolism by the Termite Flagellate Trichomitopsis termopsidis. Appl Environ Microbiol. 1980 Apr;39(4):859–863. doi: 10.1128/aem.39.4.859-863.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yamin M. A. Cellulose metabolism by the flagellate trichonympha from a termite is independent of endosymbiotic bacteria. Science. 1981 Jan 2;211(4477):58–59. doi: 10.1126/science.211.4477.58. [DOI] [PubMed] [Google Scholar]
  16. Yang M. G., Manoharan K., Mickelsen O. Nutritional contribution of volatile fatty acids from the cecum of rats. J Nutr. 1970 May;100(5):545–550. doi: 10.1093/jn/100.5.545. [DOI] [PubMed] [Google Scholar]
  17. Zehnder A. J., Huser B., Brock T. D. Measuring radioactive methane with the liquid scintillation counter. Appl Environ Microbiol. 1979 May;37(5):897–899. doi: 10.1128/aem.37.5.897-899.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES