Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Jan;5(1):147–162. doi: 10.1016/j.nurt.2007.10.062

Spinal cord injury: Present and future therapeutic devices and prostheses

Simon F Giszter 1,
PMCID: PMC2390875  NIHMSID: NIHMS37116  PMID: 18164494

Summary

A range of passive and active devices are under development or are already in clinical use to partially restore function after spinal cord injury (SCI). Prosthetic devices to promote host tissue regeneration and plasticity and reconnection are under development, comprising bioengineered bridging materials free of cells. Alternatively, artificial electrical stimulation and robotic bridges may be used, which is our focus here. A range of neuroprostheses interfacing either with CNS or peripheral nervous system both above and below the lesion are under investigation and are at different stages of development or translation to the clinic. In addition, there are orthotic and robotic devices which are being developed and tested in the laboratory and clinic that can provide mechanical assistance, training or substitution after SCI. The range of different approaches used draw on many different aspects of our current but limited understanding of neural regeneration and plasticity, and spinal cord function and interactions with the cortex. The best therapeutic practice will ultimately likely depend on combinations of these approaches and technologies and on balancing the combined effects of these on the biological mechanisms and their interactions after injury. An increased understanding of plasticity of brain and spinal cord, and of the behavior of innate modular mechanisms in intact and injured systems, will likely assist in future developments. We review the range of device designs under development and in use, the basic understanding of spinal cord organization and plasticity, the problems and design issues in device interactions with the nervous system, and the possible benefits of active motor devices.

Key Words: Spinal cord, neuroprostheses, plasticity, rehabilitation, motor function

References

  • 1.Schwab JM, Brechtel K, Mueller C-A, et al. Experimental strategies to promote spinal-cord regenerationan integrative perspective. Prog Neurobiol. 2006;78:91–116. doi: 10.1016/j.pneurobio.2005.12.004. [DOI] [PubMed] [Google Scholar]
  • 2.Pfister BJ, Huang JH, Kameswaran N, et al. Neural engineering to produce in vitro nerve constructs and neurointerface. Neurosurgery. 2007;60:137–141. doi: 10.1227/01.NEU.0000249197.61280.1D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Wolpaw JR. The education and re-education of the spinal cord. Prog Brain Res. 2006;157:261–280. doi: 10.1016/S0079-6123(06)57017-7. [DOI] [PubMed] [Google Scholar]
  • 4.Chapin JK, Moxon KA. Neural prostheses for restoration of sensory and motor function. Boca Raton: CRC Press; 2000. [Google Scholar]
  • 5.Leuthardt EC, Schalk G, Moran D, et al. The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery. 2006;59:1–14. doi: 10.1227/01.NEU.0000221506.06947.AC. [DOI] [PubMed] [Google Scholar]
  • 6.de Leon RD, Kubasak MD, Phelps PE, et al. Using robotics to teach the spinal cord to walk. Brain Res Rev. 2002;40:267–273. doi: 10.1016/S0165-0173(02)00209-6. [DOI] [PubMed] [Google Scholar]
  • 7.Kilgore KL, Scherer M, Bobblitt R, et al. Neuroprosthesis consumers’ forum: consumer priorities for research directions. J Rehabil Res Dev. 2001;38:655–660. [PubMed] [Google Scholar]
  • 8.Caggiano AO, Zimber MP, Ganguly A, et al. Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J Neurotrauma. 2005;22:226–239. doi: 10.1089/neu.2005.22.226. [DOI] [PubMed] [Google Scholar]
  • 9.Houle JD, Tom VJ, Mayes D, et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci. 2006;26:7405–7415. doi: 10.1523/JNEUROSCI.1166-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Stirling RV, Dunlop SA, Beazley LD. Electrophysiological evidence for transient topographic organization of retinotectal projections during optic nerve regeneration in the lizard, Ctenophorus ornatus. Vis Neurosci. 1999;16:681–693. doi: 10.1017/S0952523899164083. [DOI] [PubMed] [Google Scholar]
  • 11.Dunlop SA, Stirling RV, Rodger J, et al. Failure to form a stable topographic map during optic nerve regeneration: abnormal activity-dependent mechanisms. Exp Neurol. 2003;184:805–815. doi: 10.1016/j.expneurol.2003.08.013. [DOI] [PubMed] [Google Scholar]
  • 12.Campos L, Ambron RT, Martin JH. Bridge over troubled waters. Neuroreport. 2004;15:2691–2694. [PubMed] [Google Scholar]
  • 13.Fawcett JW, Curt A, Steeves JD, et al. Guidelines for the conduct of clinical trials for SCI as developed by the ICCP panel: spontaneous recovery after SCI and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45:190–205. doi: 10.1038/sj.sc.3102007. [DOI] [PubMed] [Google Scholar]
  • 14.U.S. Food and Drug Administration. Is the product a medical device? Available at: http://www.fda.gov/cdrh/devadvice/312.html. Accessed October 31, 2007.
  • 15.Saviola J. The FDA’s role in medical device clinical studies of human subjects. J Neurol Eng. 2005;2:S1–4. doi: 10.1088/1741-2560/2/1/001. [DOI] [PubMed] [Google Scholar]
  • 16.Falowski S, Celii A, Sharan A. Spinal cord stimulation: an update. Neurotherapeutics. 2008;5:86–99. doi: 10.1016/j.nurt.2007.10.066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Belverud S, Mogilner A, Schulder M. Intrathecal pumps. Neurotherapeutics. 2008;5:114–122. doi: 10.1016/j.nurt.2007.10.070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Mayer RD, Howard FM. Sacral nerve stimulation: neuromodulation for voiding dysfunction and pain. Neurotherapeutics. 2008;5:107–113. doi: 10.1016/j.nurt.2007.10.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Murphy DB, McGuire G, Peng P. Treatment of autonomic hyperreflexia in a quadriplegic patient by epidural anesthesia in the postoperative period. Anesth Analg. 1999;89:148–149. doi: 10.1097/00000539-199907000-00025. [DOI] [PubMed] [Google Scholar]
  • 20.Yanagiya Y, Sato T, Kawada T, et al. Bionic epidural stimulation restores arterial pressure regulation during orthostasis. J Appl Physiol. 2004;97:984–990. doi: 10.1152/japplphysiol.00162.2004. [DOI] [PubMed] [Google Scholar]
  • 21.Patil PG, Turner DA. The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics. 2008;5:137–146. doi: 10.1016/j.nurt.2007.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Smart Prostheses: exploring assistive devices for the body and mind. Task Group Summaries. National Academies Keck Futures Initiative. The National Academies Press. 2007.
  • 23.Donoghue JP, Nurmikko A, Black M, et al. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol. 2007;579:603–611. doi: 10.1113/jphysiol.2006.127209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lauer RT, Peckham PH, Kilgore KL. EEG-based control of a hand grasp neuroprosthesis. Neuroreport. 1999;10:1767–1771. doi: 10.1097/00001756-199906030-00026. [DOI] [PubMed] [Google Scholar]
  • 25.Navarro X, Krueger TB, Lago N, et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10:229–258. doi: 10.1111/j.1085-9489.2005.10303.x. [DOI] [PubMed] [Google Scholar]
  • 26.Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in SCI. Med Eng Phys. 2001;23:19–28. doi: 10.1016/S1350-4533(01)00012-1. [DOI] [PubMed] [Google Scholar]
  • 27.Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–360. doi: 10.1146/annurev.bioeng.6.040803.140103. [DOI] [PubMed] [Google Scholar]
  • 28.Kilgore KL, Peckham PH, Keith MW. In: Advances in upper extremity functional restoration employing neuroprostheses. Ch 2 in neural prostheses for restoration of sensory and motor function. Chapin JK, Moxon KA, editors. Boca Raton: CRC Press; 2000. [Google Scholar]
  • 29.Barbeau H, Ladouceur M, Mirbagheri MM, et al. The effect of locomotor training combined with functional electrical stimulation in chronic spinal cord injured subjects: walking and reflex studies. Brain Res Brain Res Rev. 2002;40:274–291. doi: 10.1016/S0165-0173(02)00210-2. [DOI] [PubMed] [Google Scholar]
  • 30.Dobkin B. The clinical science of neurologic rehabilitation. 2nd ed. New York: Oxford University Press; 2003. [Google Scholar]
  • 31.Creasey GH, Kilgore KL, Brown-Triolo DL, et al. Reduction of costs of disability using neuroprostheses. Assist Technol. 2000;12:67–75. doi: 10.1080/10400435.2000.10132010. [DOI] [PubMed] [Google Scholar]
  • 32.Jacobs PL, Nash MS. Modes, benefits, and risks of voluntary and electrically induced exercise in persons with SCI. J Spinal Cord Med. 2001;24:10–18. doi: 10.1080/10790268.2001.11753549. [DOI] [PubMed] [Google Scholar]
  • 33.Bogic KM, Triolo RJ. Effects of regular use of neuromuscular electrical stimulation on tissue health. J Rehabil Res Dev. 2003;40:469–475. doi: 10.1682/JRRD.2003.11.0469. [DOI] [PubMed] [Google Scholar]
  • 34.Agarwal S, Triolo RJ, Kobetic R, et al. Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after SCI. J Rehabil Res Dev. 2003;40:241–252. [PubMed] [Google Scholar]
  • 35.Petruska JC, Ichiyama RM, Jindrich DL, et al. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci. 2007;27:4460–4471. doi: 10.1523/JNEUROSCI.2302-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Dupont-Versteegden EE, Houle JD, Gurley CM, et al. Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol. 1998;275:C1124–C1133. doi: 10.1152/ajpcell.1998.275.4.C1124. [DOI] [PubMed] [Google Scholar]
  • 37.Ghiani CA, Ying Z, Vellis J, et al. Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia. 2007;55:966–975. doi: 10.1002/glia.20521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Vaynman S, Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715. doi: 10.1002/jnr.20979. [DOI] [PubMed] [Google Scholar]
  • 39.Wolpert DM, Ghahramani Z, Flanagan JR. Perspectives and problems in motor learning. Trends Cogn Sci. 2001;5:487–494. doi: 10.1016/S1364-6613(00)01773-3. [DOI] [PubMed] [Google Scholar]
  • 40.Giszter S, Patil V, Hart C. Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res. 2007;165:323–46. doi: 10.1016/S0079-6123(06)65020-6. [DOI] [PubMed] [Google Scholar]
  • 41.Davis DW, Thelen E, Keck J. Treadmill stepping in infants bom prematurely. Early Hum Dev. 1994;39:211–223. doi: 10.1016/0378-3782(94)90199-6. [DOI] [PubMed] [Google Scholar]
  • 42.Cappellini G, Ivanenko YP, Poppele RE, et al. Motor patterns in human walking and running. J Neurophysiol. 2006;95:3426–3437. doi: 10.1152/jn.00081.2006. [DOI] [PubMed] [Google Scholar]
  • 43.Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006;52:751–766. doi: 10.1016/j.neuron.2006.11.008. [DOI] [PubMed] [Google Scholar]
  • 44.Kargo WJ, Giszter SF. Rapid collection of aimed movements by summation of force-field primitives. J Neurosci. 2000;20:409–426. doi: 10.1523/JNEUROSCI.20-01-00409.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Giszter SF, Kargo WJ, Davies M, et al. Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support. J Neurophysiol. 1998;80:3021–3030. doi: 10.1152/jn.1998.80.6.3021. [DOI] [PubMed] [Google Scholar]
  • 46.Miya D, Giszter S, Mori F, et al. Fetal transplants alter the development of function after spinal cord transection in newborn rats. J Neurosci. 1997;17:4856–4872. doi: 10.1523/JNEUROSCI.17-12-04856.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Martin JH. The corticospinal system: from development to motor control. Neuroscientist. 2005;11:161–173. doi: 10.1177/1073858404270843. [DOI] [PubMed] [Google Scholar]
  • 48.Bouyer LJ, Rossignol S. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J Neurophysiol. 2003;90:3640–3653. doi: 10.1152/jn.00497.2003. [DOI] [PubMed] [Google Scholar]
  • 49.Prinz AA. Insights from models of rhythmic motor systems. Curr Opin Neurobiol. 2006;16:615–620. doi: 10.1016/j.conb.2006.10.001. [DOI] [PubMed] [Google Scholar]
  • 50.Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci. 2004;7:1345–1352. doi: 10.1038/nn1352. [DOI] [PubMed] [Google Scholar]
  • 51.Rossignol S, Brustein E, Bouyer L, et al. Adaptive changes of locomotion after central and peripheral lesions. Can J Physiol Pharmacol. 2004;82:617–627. doi: 10.1139/y04-068. [DOI] [PubMed] [Google Scholar]
  • 52.Bouyer LJ, Whelan PJ, Pearson KG, et al. Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy. J Neurosci. 2001;21:3531–3541. doi: 10.1523/JNEUROSCI.21-10-03531.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.de Leon RD, Acosta CN. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats. J Neurotrauma. 2006;23:1147–1163. doi: 10.1089/neu.2006.23.1147. [DOI] [PubMed] [Google Scholar]
  • 54.Reinkensmeyer DJ, Aoyagi D, Emken JL, et al. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006;43:657–670. doi: 10.1682/JRRD.2005.04.0073. [DOI] [PubMed] [Google Scholar]
  • 55.Kirsch R. Development of a neuroprosthesis for restoring arm and hand function via functional electrical stimulation following high cervical SCI. Conf Proc IEEE Eng Med Biol Soc. 2005;4:4142–4144. doi: 10.1109/IEMBS.2005.1615375. [DOI] [PubMed] [Google Scholar]
  • 56.Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res. 2004;143:123–129. doi: 10.1016/S0079-6123(03)43012-4. [DOI] [PubMed] [Google Scholar]
  • 57.Liberson WT, Holmquest HJ, Scot D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105. [PubMed] [Google Scholar]
  • 58.Graupe D. An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res. 2002;24:431–442. doi: 10.1179/016164102101200302. [DOI] [PubMed] [Google Scholar]
  • 59.Rybak IA, Stecina K, Shevtsova NA, et al. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol. 2006;577:641–658. doi: 10.1113/jphysiol.2006.118711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Chen Y, Chen XY, Jakeman LB, et al. Operant conditioning of H-reflex can correct a locomotor abnormality after SCI in rats. J Neurosci. 2006;26:12537–12543. doi: 10.1523/JNEUROSCI.2198-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zwarts MJ, Stegeman DF. Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve. 2003;28:1–17. doi: 10.1002/mus.10358. [DOI] [PubMed] [Google Scholar]
  • 62.Davis JA, Triolo RJ, Uhlir J, et al. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers—where do we stand? J Rehabil Res Dev. 2001;38:609–17. [PubMed] [Google Scholar]
  • 63.Reference removed.
  • 64.Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics. 2008;5:100–106. doi: 10.1016/j.nurt.2007.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Hoffer JA, Kallesøe K. How to use nerve cuffs to stimulate, record or modulate neural activity. In: Chapin JK, Moxon KA, editors. Neural prostheses for restoration of sensory and motor function. Boca Raton: CRC Press; 2000. pp. 139–175. [Google Scholar]
  • 66.Grill WM, Mortimer JT. Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans Rehabil Eng. 1996;4:49–62. doi: 10.1109/86.506402. [DOI] [PubMed] [Google Scholar]
  • 67.Grill WR, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Trans Rehabil Eng. 1998;6:364–373. doi: 10.1109/86.736150. [DOI] [PubMed] [Google Scholar]
  • 68.Stieglitz T, Gross M. Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sensors Actuators B. 2002;12:1–7. [Google Scholar]
  • 69.Pfister BJ, Iwata A, Meaney DF, et al. Extreme stretch growth of integrated axons. J Neurosci. 2004;24:7978–83. doi: 10.1523/JNEUROSCI.1974-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303. doi: 10.1109/TNSRE.2002.806840. [DOI] [PubMed] [Google Scholar]
  • 71.Yoshida K, Horch K. Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Trans Biomed Eng. 1993;40:492–494. doi: 10.1109/10.243412. [DOI] [PubMed] [Google Scholar]
  • 72.Branner A, Stein RB, Fernandez E, et al. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic Nerve. IEEE Trans Biomed Eng. 2004;51:146–157. doi: 10.1109/TBME.2003.820321. [DOI] [PubMed] [Google Scholar]
  • 73.Aoyagi Y, Stein RB, Branner A, et al. Capabilities of a penetrating microelectrode array for recording single units in dorsal root ganglia of the cat. J Neurosci Methods. 2003;128:9–20. doi: 10.1016/S0165-0270(03)00143-2. [DOI] [PubMed] [Google Scholar]
  • 74.Edell DJ. A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng. 1986;33:203–214. doi: 10.1109/TBME.1986.325892. [DOI] [PubMed] [Google Scholar]
  • 75.Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weightmultichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators. 1997;60:240–243. doi: 10.1016/S0924-4247(97)01494-5. [DOI] [Google Scholar]
  • 76.Wells J, Konrad P, Kao C, et al. Pulsed laser versus electrical energy for peripheral nerve stimulation. J Neurosci Methods. 2007;163:326–37. doi: 10.1016/j.jneumeth.2007.03.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Wells J, Kao C, Konrad P, et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J. 2007;93:2567–80. doi: 10.1529/biophysj.107.104786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.North RB, Kidd DH, Petrucci L, et al. Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: part II-clinical outcomes. Neurosurgery. 2005;57:990–996. doi: 10.1227/01.NEU.0000180030.00167.b9. [DOI] [PubMed] [Google Scholar]
  • 79.Spence AJ, Neeves KB, Murphy D, et al. Flexible multielectrodes can resolve multiple muscles in an insect appendage. J Neurosci Methods. 2007;159:116–124. doi: 10.1016/j.jneumeth.2006.07.002. [DOI] [PubMed] [Google Scholar]
  • 80.McCreery D, Pikov V, Lossinsky A, et al. Arrays for chronic functional microstimulation of the lumbosacral spinal cord. IEEE Trans Neural Syst Rehabil Eng. 2004;12:195–207. doi: 10.1109/TNSRE.2004.827223. [DOI] [PubMed] [Google Scholar]
  • 81.Yang CT, Vaca L, Roy R, et al. Neural-ensemble activity of spinal cord L1/L2 during stepping in a decerebrate rat preparation. Proc. 2nd International IEEE/EMBS Conference on Neural Engineering; March 16–19, 2005; Arlington, Virginia.
  • 82.Mushahwar VK, Collins DF, Prochazka A. Spinal cord micro-stimulation generates functional limb movements in chronically implanted cats. Exp Neurol. 2000;163:422–429. doi: 10.1006/exnr.2000.7381. [DOI] [PubMed] [Google Scholar]
  • 83.NeuroNexus Technologies. Available at: http://www.neuronexustech.com/. Accessed October 31, 2007.
  • 84.Musallam S, Bak MJ, Troyk PR, et al. A floating metal micro-electrode array for chronic implantation. J Neurosci Methods. 2007;160:122–127. doi: 10.1016/j.jneumeth.2006.09.005. [DOI] [PubMed] [Google Scholar]
  • 85.Jackson A, Mavoori J, Fetz EE. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 2006;444:56–60. doi: 10.1038/nature05226. [DOI] [PubMed] [Google Scholar]
  • 86.Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci. 1998;860:360–376. doi: 10.1111/j.1749-6632.1998.tb09062.x. [DOI] [PubMed] [Google Scholar]
  • 87.Lavrov I, Gerasimenko YP, Ichiyama RM, et al. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. J NeuroPhysiol. 2006;96:1699–1710. doi: 10.1152/jn.00325.2006. [DOI] [PubMed] [Google Scholar]
  • 88.Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006;157:253–263. doi: 10.1016/j.jneumeth.2006.05.004. [DOI] [PubMed] [Google Scholar]
  • 89.Ichiyama RM, Gerasimenko YP, Zhong H, et al. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005;383:339–344. doi: 10.1016/j.neulet.2005.04.049. [DOI] [PubMed] [Google Scholar]
  • 90.Barthelemy D, Leblond H, Provencher J, et al. Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J NeuroPhysiol. 2006;96:3273–3292. doi: 10.1152/jn.00203.2006. [DOI] [PubMed] [Google Scholar]
  • 91.Barthelemy D, Leblond H, Rossignol S. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J NeuroPhysiol. 2007;97:1986–2000. doi: 10.1152/jn.00818.2006. [DOI] [PubMed] [Google Scholar]
  • 92.Iwahara T, Atsuta Y, Garcia-Rill E, et al. Spinal cord stimulation induced locomotion in the adult cat. Brain Res Bull. 1991;28:99–105. doi: 10.1016/0361-9230(92)90235-P. [DOI] [PubMed] [Google Scholar]
  • 93.Giszter SF, Mussa-Ivaldi FA, Bizzi E. Convergent force fields organized in the frog’s spinal cord. J Neurosci. 1993;13:467–491. doi: 10.1523/JNEUROSCI.13-02-00467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Tresch MC, Bizzi E. Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res. 1999;129:401–416. doi: 10.1007/s002210050908. [DOI] [PubMed] [Google Scholar]
  • 95.Lemay MA, Grill WM. Modularity of motor output evoked by intraspinal microstimulation in cats. J NeuroPhysiol. 2004;91:502–514. doi: 10.1152/jn.00235.2003. [DOI] [PubMed] [Google Scholar]
  • 96.Mushahwar VK, Horch KW. Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Rehabil Eng. 2000;8:11–21. doi: 10.1109/86.830944. [DOI] [PubMed] [Google Scholar]
  • 97.Kargo WJ, Giszter SF. Rapid collection of aimed movements by summation of force-field primitives. J Neurosci. 2000;20:409–426. doi: 10.1523/JNEUROSCI.20-01-00409.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Lafreniere-Roula M, McCrea DA. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J NeuroPhysiol. 2005;94:1120–1132. doi: 10.1152/jn.00216.2005. [DOI] [PubMed] [Google Scholar]
  • 99.Cappellini G, Ivanenko YP, Poppele RE, et al. Motor patterns in human walking and running. J NeuroPhysiol. 2006;95:3426–3437. doi: 10.1152/jn.00081.2006. [DOI] [PubMed] [Google Scholar]
  • 100.Bizzi E, Mussa-Ivaldi FA, Giszter S. Computations underlying the execution of movement: a biological perspective. Science. 1991;253:287–291. doi: 10.1126/science.1857964. [DOI] [PubMed] [Google Scholar]
  • 101.Tai C, Booth AM, Robinson CJ, et al. Multi-joint movement of the cat hindlimb evoked by microstimulation of the lumbosacral spinal cord. Exp Neurol. 2003;183:620–627. doi: 10.1016/S0014-4886(03)00210-3. [DOI] [PubMed] [Google Scholar]
  • 102.Boyce VS. PhD thesis. Philadelphia, Penn: Neuroscience Graduate Program, Drexel University College of Medicine; 2006. Treadmill locomotor training and neurotrophic factors: their effect on locomotor recovery and spinal modularity in the chronic spinal cat. [Google Scholar]
  • 103.Aoyagi Y, Mushahwar VK, Stein RB, et al. Movements elicited by electrical stimulation of muscles, nerves, intermediate spinal cord, and spinal roots in anesthetized and decerebrate cats. IEEE Trans Neural Syst Rehabil Eng. 2004;12:1–11. doi: 10.1109/TNSRE.2003.823268. [DOI] [PubMed] [Google Scholar]
  • 104.Mussa-Ivaldi FA, Giszter SF, Bizzi E. Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci USA. 1994;91:7534–7538. doi: 10.1073/pnas.91.16.7534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Lemay MA, Galagan JE, Hogan N, et al. Modulation and vectorial summation of the spinalized frog’s hindlimb end-point force produced by intraspinal electrical stimulation of the cord. IEEE Trans Neural Syst Rehabil Eng. 2001;9:12–23. doi: 10.1109/7333.918272. [DOI] [PubMed] [Google Scholar]
  • 106.Stein PS, Camp AW, Robertson GA, et al. Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle. J Neurosci. 1986;6:2259–2266. doi: 10.1523/JNEUROSCI.06-08-02259.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Giszter SF, Grill WM, Lemay MA, et al. Intraspinal microstimulation: techniques, perspectives and prospects for FES. In: Moxon KA, Chapin JK, et al., editors. Neural prostheses for restoration of Sensory and motor function. Boca Raton: CRC Press; 2000. pp. 101–138. [Google Scholar]
  • 108.Gaunt RA, Prochazka A, Mushahwar VK, et al. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. J NeuroPhysiol. 2006;96:2995–3005. doi: 10.1152/jn.00061.2006. [DOI] [PubMed] [Google Scholar]
  • 109.Moritz CT, Lucas TH, Perlmutter SI, et al. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. J NeuroPhysiol. 2007;97:110–120. doi: 10.1152/jn.00414.2006. [DOI] [PubMed] [Google Scholar]
  • 110.Minsky ML, Selfridge OG. Learning in random nets. In: Cherry C, editor. Fourth London Symposium on Information Theory. NY: Academic Press, Inc; 1957. [Google Scholar]
  • 111.Simoni MF, Cymbalyuk GS, Sorensen ME, et al. A multiconductance silicon neuron with biologically matched dynamics. IEEE Trans Biomed Eng. 2004;51:342–354. doi: 10.1109/TBME.2003.820390. [DOI] [PubMed] [Google Scholar]
  • 112.Fasoli SE, Krebs HI, Hogan N. Robotic technology and stroke rehabilitation: translating research into practice. Top Stroke Rehabil. 2004;11:11–19. doi: 10.1310/G8XB-VM23-1TK7-PWQU. [DOI] [PubMed] [Google Scholar]
  • 113.Lunenburger L, Colombo G, Riener R, et al. Biofeedback in gait training with the robotic orthosis. Lokomat. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4888–91. doi: 10.1109/IEMBS.2004.1404352. [DOI] [PubMed] [Google Scholar]
  • 114.Schmidt H, Werner C, Bernhardt R, et al. Gait rehabilitation machines based on programmable footplates. J Neuroengineering Rehabil. 2007;4:2–2. doi: 10.1186/1743-0003-4-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Aaron RK, Herr HM, Ciombor DM, et al. Horizons in prosthesis development for the restoration of limb function. J Am Acad Orthop Surg. 2006;14:S198–204. doi: 10.5435/00124635-200600001-00043. [DOI] [PubMed] [Google Scholar]
  • 116.Udoekwere UI, Ramakrishnan A, Mbi L, Giszter SF. Robot application of elastic fields to the pelvis of the spinal transected rat: a tool for detailed assessment and rehabilitation. Proceedings of the 28th Annual International Conference of the IEEE/EMBS 2006; November 2006, New York. [DOI] [PMC free article] [PubMed]
  • 117.Ichinose WE, Reinkensmeyer DJ, Aoyagi D, et al. A robotic device for measuring and controlling pelvic motion during locomotor rehabilitation (man). Proc 25th Ann Intl Conf IEEE EMBS, 2003; Cancun, Mexico.
  • 118.Haydon PG, Ellis-Davies GC. Ultrahigh-speed photochemical stimulation of neurons. Nat Methods. 2005;2:811–812. doi: 10.1038/nmeth1105-811. [DOI] [PubMed] [Google Scholar]
  • 119.Arenkiel BR, Peca J, Davison IG, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 2007;54:205–218. doi: 10.1016/j.neuron.2007.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Deisseroth K, Feng G, Majewska AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. 2006;26:10380–10386. doi: 10.1523/JNEUROSCI.3863-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Barbeau H, McCrea DA, O’Donovan MJ, et al. Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev. 1999;30:27–51. doi: 10.1016/S0165-0173(99)00008-9. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES