Abstract
The reductive biodegradation of a variety of haloaromatic substrates was monitored in samples from two sites within a shallow anoxic aquifer and was compared with freshwater sediment and sewage sludge. The metabolic capacity existing in methane-producing aquifer material was very similar to that in sediment in that three of four chlorobenzoates, five of seven chlorophenols, and one of two chlorophenoxyacetate herbicides were reductively dehalogenated in both types of incubations. The 2,4-dichlorophenoxyacetate was first converted to a dichlorophenol before dehalogenation occurred. Sewage sludge microorganisms dehalogenated four of seven chlorophenols tested and degraded both phenoxyacetate herbicides by first converting them to the corresponding chlorophenols, but the microorganisms did not transform the chlorobenzoates. In general, the same suite of initial metabolites were produced from a test substrate in all types of samples, as confirmed by cochromatography of the intermediates with authentic material. Aquifer microbiota from a sulfate-reducing site was unable to significantly degrade any of the haloaromatic substrates tested. Biological removal of the sulfate in samples from this site permitted dehalogenation of a model substrate, while stimulation of methanogenesis without removal of sulfate did not. These results demonstrate that dehalogenating microorganisms were present at this site but that their activity was at least partially inhibited by the high sulfate levels.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attaway H. H., 3rd, Paynter M. J., Camper N. D. Degradation of selected phenylurea herbicides by anaerobic pond sediment. J Environ Sci Health B. 1982;17(6):683–699. doi: 10.1080/03601238209372350. [DOI] [PubMed] [Google Scholar]
- Boyd S. A., Shelton D. R. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol. 1984 Feb;47(2):272–277. doi: 10.1128/aem.47.2.272-277.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd S. A., Shelton D. R., Berry D., Tiedje J. M. Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol. 1983 Jul;46(1):50–54. doi: 10.1128/aem.46.1.50-54.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans W. C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 1977 Nov 3;270(5632):17–22. doi: 10.1038/270017a0. [DOI] [PubMed] [Google Scholar]
- Horowitz A., Suflita J. M., Tiedje J. M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol. 1983 May;45(5):1459–1465. doi: 10.1128/aem.45.5.1459-1465.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Klug M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol. 1983 Jan;45(1):187–192. doi: 10.1128/aem.45.1.187-192.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mountfort D. O., Asher R. A., Mays E. L., Tiedje J. M. Carbon and electron flow in mud and sandflat intertidal sediments at delaware inlet, nelson, new zealand. Appl Environ Microbiol. 1980 Apr;39(4):686–694. doi: 10.1128/aem.39.4.686-694.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelton D. R., Tiedje J. M. General method for determining anaerobic biodegradation potential. Appl Environ Microbiol. 1984 Apr;47(4):850–857. doi: 10.1128/aem.47.4.850-857.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sleat R., Robinson J. P. The bacteriology of anaerobic degradation of aromatic compounds. J Appl Bacteriol. 1984 Dec;57(3):381–394. doi: 10.1111/j.1365-2672.1984.tb01404.x. [DOI] [PubMed] [Google Scholar]
- Suflita J. M., Horowitz A., Shelton D. R., Tiedje J. M. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science. 1982 Dec 10;218(4577):1115–1117. doi: 10.1126/science.218.4577.1115. [DOI] [PubMed] [Google Scholar]
- Winfrey M. R., Zeikus J. G. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol. 1977 Feb;33(2):275–281. doi: 10.1128/aem.33.2.275-281.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]