Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Nov;52(5):1091–1095. doi: 10.1128/aem.52.5.1091-1095.1986

Distribution of Hydrogen-Metabolizing Bacteria in Alfalfa Field Soil

Scott D Cunningham 1,, Yoram Kapulnik 1, Donald A Phillips 1,*
PMCID: PMC239178  PMID: 16347207

Abstract

H2 evolved by alfalfa root nodules during the process of N2 fixation may be an important factor influencing the distribution of soil bacteria. To test this hypothesis under field conditions, over 700 bacterial isolates were obtained from fallow soil or from the 3-mm layer of soil surrounding alfalfa (Medicago sativa L.) root nodules, alfalfa roots, or bindweed (Convolvulus arvensis L.) roots. Bacteria were isolated under either aerobic or microaerophilic conditions and were tested for their capacity to metabolize H2. Isolates showing net H2 uptake and 3H2 incorporation activity under laboratory conditions were assigned a Hup+ phenotype, whereas organisms with significant H2 output capacity were designated as a Hout+ phenotype. Under aerobic isolation conditions two Hup+ isolates were obtained, whereas under microaerophilic conditions five Hup+ and two Hout+ isolates were found. The nine isolates differed on the basis of 24 standard bacteriological characteristics or fatty acid composition. Five of the nine organisms were isolated from soil around root nodules, whereas the other four were found distributed among the other three soil environments. On the basis of the microaerophilic isolations, 4.8% of the total procaryotic isolates from soil around root nodules were capable of oxidizing H2, and 1.2% could produce H2. Two of the Hup+ isolates were identified as Rhizobium meliloti by root nodulation tests, but the fact that none of the isolates reduced C2H2 under the assay conditions suggested that the H2 metabolism traits were associated with various hydrogenase systems rather than with nitrogenase activity. Results from this study support the concept that H2 evolution by alfalfa root nodules has a significant effect on the surrounding microenvironment and influences the number and diversity of bacteria occupying that region.

Full text

PDF
1091

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedmar E. J., Brewin N. J., Phillips D. A. Effect of Plasmid pIJ1008 from Rhizobium leguminosarum on Symbiotic Function of Rhizobium meliloti. Appl Environ Microbiol. 1984 Apr;47(4):876–878. doi: 10.1128/aem.47.4.876-878.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedmar E. J., Edie S. A., Phillips D. A. Host Plant Cultivar Effects on Hydrogen Evolution by Rhizobium leguminosarum. Plant Physiol. 1983 Aug;72(4):1011–1015. doi: 10.1104/pp.72.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowien B., Schlegel H. G. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol. 1981;35:405–452. doi: 10.1146/annurev.mi.35.100181.002201. [DOI] [PubMed] [Google Scholar]
  4. La Favre J. S., Focht D. D. Conservation in soil of h(2) liberated from n(2) fixation by hup nodules. Appl Environ Microbiol. 1983 Aug;46(2):304–311. doi: 10.1128/aem.46.2.304-311.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Maier R. J., Campbell N. E., Hanus F. J., Simpson F. B., Russell S. A., Evans H. J. Expression of hydrogenase activity in free-living Rhizobium japonicum. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3258–3262. doi: 10.1073/pnas.75.7.3258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  7. Ruiz-Argüeso T., Maier R. J., Evans H. J. Hydrogen Evolution from Alfalfa and Clover Nodules and Hydrogen Uptake by Free-Living Rhizobium meliloti. Appl Environ Microbiol. 1979 Mar;37(3):582–587. doi: 10.1128/aem.37.3.582-587.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schubert K. R., Evans H. J. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1207–1211. doi: 10.1073/pnas.73.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Simpson F. B., Burris R. H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science. 1984 Jun 8;224(4653):1095–1097. doi: 10.1126/science.6585956. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES