Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 Nov;52(5):1224–1226. doi: 10.1128/aem.52.5.1224-1226.1986

Lysozyme-Sensitive Bioemulsifier for Immiscible Organophosphorus Pesticides

Mukul N Patel 1, Karumathil P Gopinathan 1,*
PMCID: PMC239205  PMID: 16347223

Abstract

Two Bacillus strains capable of emulsifying immiscible organophosphorus pesticides were isolated by enrichment methods. The emulsifying factor produced by Bacillus strain FE-2 has a high molecular weight, is Iysozyme sensitive and thermostable, and can be precipitated with trichloroacetic acid or ammonium sulfate; it may be a glycolipopeptide. It is specific for immiscible organophosphorus pesticides and is secreted during growth in the presence of such pesticides.

Full text

PDF
1224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Daughton C. G., Hsieh D. P. Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol. 1977 Aug;34(2):175–184. doi: 10.1128/aem.34.2.175-184.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Johnson L. M., Talbot H. W., Jr Detoxification of pesticides by microbial enzymes. Experientia. 1983 Nov 15;39(11):1236–1246. doi: 10.1007/BF01990361. [DOI] [PubMed] [Google Scholar]
  3. Kilbane J. J., Chatterjee D. K., Karns J. S., Kellogg S. T., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Jul;44(1):72–78. doi: 10.1128/aem.44.1.72-78.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kretschmer A., Bock H., Wagner F. Chemical and Physical Characterization of Interfacial-Active Lipids from Rhodococcus erythropolis Grown on n-Alkanes. Appl Environ Microbiol. 1982 Oct;44(4):864–870. doi: 10.1128/aem.44.4.864-870.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Miyamoto J., Kitagawa K., Sato Y. Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on Sumithion. Jpn J Exp Med. 1966 Apr;36(2):211–225. [PubMed] [Google Scholar]
  6. Munnecke D. M., Hsieh D. P. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol. 1974 Aug;28(2):212–217. doi: 10.1128/am.28.2.212-217.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Munnecke D. M., Hsieh D. P. Pathways of microbial metabolism of parathion. Appl Environ Microbiol. 1976 Jan;31(1):63–69. doi: 10.1128/aem.31.1.63-69.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenberg A., Alexander M. Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol. 1979 May;37(5):886–891. doi: 10.1128/aem.37.5.886-891.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosenberg E., Zuckerberg A., Rubinovitz C., Gutnick D. L. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979 Mar;37(3):402–408. doi: 10.1128/aem.37.3.402-408.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zajic J. E., Guignard H., Gerson D. F. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng. 1977 Sep;19(9):1303–1320. doi: 10.1002/bit.260190905. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES