Abstract
Bacterial strains were isolated on the basis of their ability to proliferate in a minimal medium containing one of a series of lignin-related compounds as the sole carbon and energy source. These included the aromatic monomers guaiacol, vanillic and coumaric acids, a dimer and a trimer possessing the arylglycerol-β-aryl ether linkage, anisoin, and both the ether-soluble and -insoluble fractions of kraft lignin. The growth of the strains on each of these compounds was measured. The results showed that the metabolic properties of the strains varied according to the structure of the carbon sources used for their selection. Spectrophotometric tracings of the culture medium during the log phase of growth of one of the strains on the β-O-4 dimer revealed decomposition with the release of guaiacol.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crawford D. L., Pometto A. L., Crawford R. L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate. Appl Environ Microbiol. 1983 Mar;45(3):898–904. doi: 10.1128/aem.45.3.898-904.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L., Kirk T. K., Harkin J. M., McCoy E. Bacterial cleavage of an arylglycerol- -aryl ether bond. Appl Microbiol. 1973 Feb;25(2):322–324. doi: 10.1128/am.25.2.322-324.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L., Olson P. P. Microbial catabolism of vanillate: decarboxylation to guaiacol. Appl Environ Microbiol. 1978 Oct;36(4):539–543. doi: 10.1128/aem.36.4.539-543.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenn J. K., Gold M. H. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Jun;45(6):1741–1747. doi: 10.1128/aem.45.6.1741-1747.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenn J. K., Morgan M. A., Mayfield M. B., Kuwahara M., Gold M. H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077–1083. doi: 10.1016/0006-291x(83)90672-1. [DOI] [PubMed] [Google Scholar]
- Haider K., Trojanowski J., Sundman V. Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch Microbiol. 1978 Oct 4;119(1):103–106. doi: 10.1007/BF00407936. [DOI] [PubMed] [Google Scholar]
- Janshekar H., Fiechter A. Lignin: biosynthesis, application, and biodegradation. Adv Biochem Eng Biotechnol. 1983;27:119–178. doi: 10.1007/BFb0009107. [DOI] [PubMed] [Google Scholar]
- Kirk T. K., Connors W. J., Bleam R. D., Hackett W. F., Zeikus J. G. Preparation and microbial decomposition of synthetic [14C]ligins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515–2519. doi: 10.1073/pnas.72.7.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odier E., Rolando C. Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by Pseudomonas cepacia 122. Biochimie. 1985 Feb;67(2):191–197. doi: 10.1016/s0300-9084(85)80047-x. [DOI] [PubMed] [Google Scholar]
- Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]