Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Jul;46(1):1–5. doi: 10.1128/aem.46.1.1-5.1983

l-Tryptophan Production by Achromobacter liquidum

Toshihiko Ujimaru 1, Toshio Kakimoto 1, Ichiro Chibata 1
PMCID: PMC239257  PMID: 16346331

Abstract

Conditions for the production of tryptophanase from Achromobacter liquidum and for the conversion of l-serine and indole to l-tryptophan were studied. The enzyme could be produced in amounts as great as 0.750 U/ml (degradation) and 0.294 U/ml (synthesis) by shaking cultures at 30°C in a medium containing dextrin, yeast extract, l-tryptophan, and l-glutamic acid. l-Tryptophan was produced most efficiently by shaking the cells at 37°C in a reaction mixture containing 60 mg of l-serine per ml, 60 mg of indole per ml, and 0.5 mM pyridoxal phosphate. After 3 days, 96 mg of l-tryptophan per ml was formed, and l-tryptophan was easily isolated to 85.4% yield by concentration of the reaction mixture.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botsford J. L., DeMoss R. D. Catabolite repression of tryptophanase in Escherichia coli. J Bacteriol. 1971 Jan;105(1):303–312. doi: 10.1128/jb.105.1.303-312.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeMoss R. D., Moser K. Tryptophanase in diverse bacterial species. J Bacteriol. 1969 Apr;98(1):167–171. doi: 10.1128/jb.98.1.167-171.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ema M., Kakimoto T., Chibata I. Production of L-serine by Sarcina albida. Appl Environ Microbiol. 1979 Jun;37(6):1053–1058. doi: 10.1128/aem.37.6.1053-1058.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HALL A. N., LEESON J. A., RYDON H. N., TWEDDLE J. C. The degradation of some Bz-substituted tryptophans by Escherichia coli tryptophanase. Biochem J. 1960 Feb;74:209–216. doi: 10.1042/bj0740209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Happold F. C., Hoyle L. The coli-tryptophan-indole reaction: Enzyme preparations and their action on tryptophan and some indole derivatives. Biochem J. 1935 Aug;29(8):1918–1926. doi: 10.1042/bj0291918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KUPFER D., ATKINSON D. E. QUANTITATIVE METHOD FOR DETERMINATION OF INDOLE, TRYPTOPHAN, AND ANTHRANILIC ACID IN THE SAME ALIQUOT. Anal Biochem. 1964 May;8:82–94. doi: 10.1016/0003-2697(64)90171-x. [DOI] [PubMed] [Google Scholar]
  7. NEWTON W. A., MORINO Y., SNELL E. E. PROPERTIES OF CRYSTALLINE TRYPTOPHANASE. J Biol Chem. 1965 Mar;240:1211–1218. [PubMed] [Google Scholar]
  8. NEWTON W. A., SNELL E. E. CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. Proc Natl Acad Sci U S A. 1964 Mar;51:382–389. doi: 10.1073/pnas.51.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nakazawa H., Enei H., Okumura S., Yoshida H., Yamada H. Enzymatic preparation of L-tryptophan and 5-hydroxy-L-tryptophan. FEBS Lett. 1972 Sep 1;25(1):43–45. doi: 10.1016/0014-5793(72)80449-6. [DOI] [PubMed] [Google Scholar]
  10. Shibatani T., Kakimoto T., Chibata I. Stimulation of L-asparate beta-decarboxylase formation by L-glutamate in Pseudomonas dacunhae and Improved production of L-alanine. Appl Environ Microbiol. 1979 Sep;38(3):359–364. doi: 10.1128/aem.38.3.359-364.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Watanabe T., Snell E. E. Reversibility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate, and ammonia. Proc Natl Acad Sci U S A. 1972 May;69(5):1086–1090. doi: 10.1073/pnas.69.5.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES