Abstract
Conditions for the production of tryptophanase from Achromobacter liquidum and for the conversion of l-serine and indole to l-tryptophan were studied. The enzyme could be produced in amounts as great as 0.750 U/ml (degradation) and 0.294 U/ml (synthesis) by shaking cultures at 30°C in a medium containing dextrin, yeast extract, l-tryptophan, and l-glutamic acid. l-Tryptophan was produced most efficiently by shaking the cells at 37°C in a reaction mixture containing 60 mg of l-serine per ml, 60 mg of indole per ml, and 0.5 mM pyridoxal phosphate. After 3 days, 96 mg of l-tryptophan per ml was formed, and l-tryptophan was easily isolated to 85.4% yield by concentration of the reaction mixture.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Botsford J. L., DeMoss R. D. Catabolite repression of tryptophanase in Escherichia coli. J Bacteriol. 1971 Jan;105(1):303–312. doi: 10.1128/jb.105.1.303-312.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMoss R. D., Moser K. Tryptophanase in diverse bacterial species. J Bacteriol. 1969 Apr;98(1):167–171. doi: 10.1128/jb.98.1.167-171.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ema M., Kakimoto T., Chibata I. Production of L-serine by Sarcina albida. Appl Environ Microbiol. 1979 Jun;37(6):1053–1058. doi: 10.1128/aem.37.6.1053-1058.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL A. N., LEESON J. A., RYDON H. N., TWEDDLE J. C. The degradation of some Bz-substituted tryptophans by Escherichia coli tryptophanase. Biochem J. 1960 Feb;74:209–216. doi: 10.1042/bj0740209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Happold F. C., Hoyle L. The coli-tryptophan-indole reaction: Enzyme preparations and their action on tryptophan and some indole derivatives. Biochem J. 1935 Aug;29(8):1918–1926. doi: 10.1042/bj0291918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUPFER D., ATKINSON D. E. QUANTITATIVE METHOD FOR DETERMINATION OF INDOLE, TRYPTOPHAN, AND ANTHRANILIC ACID IN THE SAME ALIQUOT. Anal Biochem. 1964 May;8:82–94. doi: 10.1016/0003-2697(64)90171-x. [DOI] [PubMed] [Google Scholar]
- NEWTON W. A., MORINO Y., SNELL E. E. PROPERTIES OF CRYSTALLINE TRYPTOPHANASE. J Biol Chem. 1965 Mar;240:1211–1218. [PubMed] [Google Scholar]
- NEWTON W. A., SNELL E. E. CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. Proc Natl Acad Sci U S A. 1964 Mar;51:382–389. doi: 10.1073/pnas.51.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakazawa H., Enei H., Okumura S., Yoshida H., Yamada H. Enzymatic preparation of L-tryptophan and 5-hydroxy-L-tryptophan. FEBS Lett. 1972 Sep 1;25(1):43–45. doi: 10.1016/0014-5793(72)80449-6. [DOI] [PubMed] [Google Scholar]
- Shibatani T., Kakimoto T., Chibata I. Stimulation of L-asparate beta-decarboxylase formation by L-glutamate in Pseudomonas dacunhae and Improved production of L-alanine. Appl Environ Microbiol. 1979 Sep;38(3):359–364. doi: 10.1128/aem.38.3.359-364.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe T., Snell E. E. Reversibility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate, and ammonia. Proc Natl Acad Sci U S A. 1972 May;69(5):1086–1090. doi: 10.1073/pnas.69.5.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
