Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Jul;46(1):171–177. doi: 10.1128/aem.46.1.171-177.1983

Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria

Ching T Hou 1, Ramesh Patel 1, Allen I Laskin 1, Nancy Barnabe 1, Irene Barist 1
PMCID: PMC239284  PMID: 16346338

Abstract

Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. J., Hou C. T. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans. Appl Microbiol. 1973 Jul;26(1):86–91. doi: 10.1128/am.26.1.86-91.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blevins W. T., Perry J. J. Metabolism of Propane, n-Propylamine, and Propionate by Hydrocarbon-Utilizing Bacteria. J Bacteriol. 1972 Oct;112(1):513–518. doi: 10.1128/jb.112.1.513-518.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cardini G., Jurtshuk P. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem. 1970 Jun 10;245(11):2789–2796. [PubMed] [Google Scholar]
  4. Cerniglia C. E., Perry J. J. Metabolism of n-propylamine, isopropylamine, and 1,3-propane diamine by Mycobacterium convolutum. J Bacteriol. 1975 Oct;124(1):285–289. doi: 10.1128/jb.124.1.285-289.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. J Bacteriol. 1967 Dec;94(6):1919–1923. doi: 10.1128/jb.94.6.1919-1923.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster J. W., Davis R. H. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol. 1966 May;91(5):1924–1931. doi: 10.1128/jb.91.5.1924-1931.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hou C. T., Patel R. N., Laski A. I., Marczak I., Barnabe N. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria. Can J Microbiol. 1981 Jan;27(1):107–115. doi: 10.1139/m81-017. [DOI] [PubMed] [Google Scholar]
  9. Hou C. T., Patel R., Laskin A. I., Barnabe N., Barist I. Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C(2) to C(4)n-Alkane-Grown Bacteria. Appl Environ Microbiol. 1983 Jul;46(1):178–184. doi: 10.1128/aem.46.1.178-184.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hou C. T., Patel R., Laskin A. I., Barnabe N., Marczak I. Microbial oxidation of gaseous hydrocarbons: production of methyl ketones from their corresponding secondary alcohols by methane- and methanol-grown microbes. Appl Environ Microbiol. 1979 Jul;38(1):135–142. doi: 10.1128/aem.38.1.135-142.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hou C. T., Patel R., Laskin A. I., Barnabe N. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Appl Environ Microbiol. 1979 Jul;38(1):127–134. doi: 10.1128/aem.38.1.127-134.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. May S. W., Abbott B. J. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans. J Biol Chem. 1973 Mar 10;248(5):1725–1730. [PubMed] [Google Scholar]
  13. McLee A. G., Kormendy A. C., Wayman M. Isolation and characterization of n-butane-utilizing microorganisms. Can J Microbiol. 1972 Aug;18(8):1191–1195. doi: 10.1139/m72-186. [DOI] [PubMed] [Google Scholar]
  14. Patel R. N., Hou C. T., Laskin A. I., Felix A., Derelanko P. Microbial Oxidation of Gaseous Hydrocarbons: Production of Methylketones from Corresponding n-Alkanes by Methane-Utilizing Bacteria. Appl Environ Microbiol. 1980 Apr;39(4):727–733. doi: 10.1128/aem.39.4.727-733.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patel R. N., Hou C. T., Laskin A. I., Felix A., Derelanko P. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria. Appl Environ Microbiol. 1980 Apr;39(4):720–726. doi: 10.1128/aem.39.4.720-726.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patel R. N., Hou C. T., Laskin A. I., Felix A., Derelanko P. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria. J Bacteriol. 1979 Aug;139(2):675–679. doi: 10.1128/jb.139.2.675-679.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. VAN DER LINDEN A. C. EPOXIDATION OF ALPHA-OLEFINS BY HEPTANE-GROWN PSEUDOMONAS CELLS. Biochim Biophys Acta. 1963 Sep 3;77:157–159. doi: 10.1016/0006-3002(63)90484-0. [DOI] [PubMed] [Google Scholar]
  18. Vestal J. R., Perry J. J. Effect of substrate on the lipids of the hydrocarbon-utilizing Mycobacterium vaccae. Can J Microbiol. 1971 Apr;17(4):445–449. doi: 10.1139/m71-075. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES