Abstract
We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Craig J. P., Yamamoto K., Takeda Y., Miwatani T. Production of cholera-like enterotoxin by a Vibrio cholerae non-O1 strain isolated from the environment. Infect Immun. 1981 Oct;34(1):90–97. doi: 10.1128/iai.34.1.90-97.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusama H., Craig J. P. Production of Biologically Active Substances by Two Strains of Vibrio cholerae. Infect Immun. 1970 Jan;1(1):80–87. doi: 10.1128/iai.1.1.80-87.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levner M., Wiener F. P., Rubin B. A. Induction of Escherichia coli and Vibrio cholerae enterotoxins by an inhibitor of protein synthesis. Infect Immun. 1977 Jan;15(1):132–137. doi: 10.1128/iai.15.1.132-137.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mekalanos J. J., Collier R. J., Romig W. R. Purification of cholera toxin and its subunits: new methods of preparation and the use of hypertoxinogenic mutants. Infect Immun. 1978 May;20(2):552–558. doi: 10.1128/iai.20.2.552-558.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sack D. A., Huda S., Neogi P. K., Daniel R. R., Spira W. M. Microtiter ganglioside enzyme-linked immunosorbent assay for vibrio and Escherichia coli heat-labile enterotoxins and antitoxin. J Clin Microbiol. 1980 Jan;11(1):35–40. doi: 10.1128/jcm.11.1.35-40.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
