Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1995 Jun;59(2):201–222. doi: 10.1128/mr.59.2.201-222.1995

Mechanisms of membrane toxicity of hydrocarbons.

J Sikkema 1, J A de Bont 1, B Poolman 1
PMCID: PMC239360  PMID: 7603409

Abstract

Microbial transformations of cyclic hydrocarbons have received much attention during the past three decades. Interest in the degradation of environmental pollutants as well as in applications of microorganisms in the catalysis of chemical reactions has stimulated research in this area. The metabolic pathways of various aromatics, cycloalkanes, and terpenes in different microorganisms have been elucidated, and the genetics of several of these routes have been clarified. The toxicity of these compounds to microorganisms is very important in the microbial degradation of hydrocarbons, but not many researchers have studied the mechanism of this toxic action. In this review, we present general ideas derived from the various reports mentioning toxic effects. Most importantly, lipophilic hydrocarbons accumulate in the membrane lipid bilayer, affecting the structural and functional properties of these membranes. As a result of accumulated hydrocarbon molecules, the membrane loses its integrity, and an increase in permeability to protons and ions has been observed in several instances. Consequently, dissipation of the proton motive force and impairment of intracellular pH homeostasis occur. In addition to the effects of lipophilic compounds on the lipid part of the membrane, proteins embedded in the membrane are affected. The effects on the membrane-embedded proteins probably result to a large extent from changes in the lipid environment; however, direct effects of lipophilic compounds on membrane proteins have also been observed. Finally, the effectiveness of changes in membrane lipid composition, modification of outer membrane lipopolysaccharide, altered cell wall constituents, and active excretion systems in reducing the membrane concentrations of lipophilic compounds is discussed. Also, the adaptations (e.g., increase in lipid ordering, change in lipid/protein ratio) that compensate for the changes in membrane structure are treated.

Full Text

The Full Text of this article is available as a PDF (519.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamowicz M., Kelley P. M., Nickerson K. W. Detergent (sodium dodecyl sulfate) shock proteins in Escherichia coli. J Bacteriol. 1991 Jan;173(1):229–233. doi: 10.1128/jb.173.1.229-233.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexandre H., Rousseaux I., Charpentier C. Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem. 1994 Oct;20(Pt 2):173–183. [PubMed] [Google Scholar]
  3. Andrews R. E., Parks L. W., Spence K. D. Some effects of douglas fir terpenes on certain microorganisms. Appl Environ Microbiol. 1980 Aug;40(2):301–304. doi: 10.1128/aem.40.2.301-304.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antunes-Madeira M. C., Madeira V. M. Membrane fluidity as affected by the insecticide lindane. Biochim Biophys Acta. 1989 Jun 26;982(1):161–166. doi: 10.1016/0005-2736(89)90187-9. [DOI] [PubMed] [Google Scholar]
  5. Antunes-Madeira M. C., Madeira V. M. Partition of DDT in synthetic and native membranes. Biochim Biophys Acta. 1986 Sep 25;861(1):159–164. doi: 10.1016/0005-2736(86)90575-4. [DOI] [PubMed] [Google Scholar]
  6. Antunes-Madeira M. C., Madeira V. M. Partition of lindane in synthetic and native membranes. Biochim Biophys Acta. 1985 Nov 7;820(2):165–172. doi: 10.1016/0005-2736(85)90109-9. [DOI] [PubMed] [Google Scholar]
  7. Antunes-Madeira M. C., Madeira V. M. Partition of malathion in synthetic and native membranes. Biochim Biophys Acta. 1987 Jul 10;901(1):61–66. doi: 10.1016/0005-2736(87)90256-2. [DOI] [PubMed] [Google Scholar]
  8. Antunes-Madeira M. C., Madeira V. M. Partition of parathion in synthetic and native membranes. Biochim Biophys Acta. 1984 Nov 21;778(1):49–56. doi: 10.1016/0005-2736(84)90446-2. [DOI] [PubMed] [Google Scholar]
  9. Assinder S. J., Williams P. A. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69. doi: 10.1016/s0065-2911(08)60119-8. [DOI] [PubMed] [Google Scholar]
  10. Atlas R. M. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev. 1981 Mar;45(1):180–209. doi: 10.1128/mr.45.1.180-209.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. BERRAH G., KONETZKA W. A. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J Bacteriol. 1962 Apr;83:738–744. doi: 10.1128/jb.83.4.738-744.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. BORST P., LOOS J. A., CHRIST E. J., SLATER E. C. Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta. 1962 Aug 27;62:509–518. doi: 10.1016/0006-3002(62)90232-9. [DOI] [PubMed] [Google Scholar]
  13. Bangham A. D., Standish M. M., Miller N. Cation permeability of phospholipid model membranes: effect of narcotics. Nature. 1965 Dec 25;208(5017):1295–1297. doi: 10.1038/2081295a0. [DOI] [PubMed] [Google Scholar]
  14. Barenholz Y., Cohen T., Korenstein R., Ottolenghi M. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes. Biophys J. 1991 Jul;60(1):110–124. doi: 10.1016/S0006-3495(91)82035-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bassé F., Sainte-Marie J., Maurin L., Bienvenüe A. Effect of benzyl alcohol on phospholipid transverse mobility in human erythrocyte membrane. Eur J Biochem. 1992 Apr 1;205(1):155–162. doi: 10.1111/j.1432-1033.1992.tb16763.x. [DOI] [PubMed] [Google Scholar]
  16. Bateman J. N., Speer B., Feduik L., Hartline R. A. Naphthalene association and uptake in Pseudomonas putida. J Bacteriol. 1986 Apr;166(1):155–161. doi: 10.1128/jb.166.1.155-161.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bean H. S. Types and characteristics of disinfectants. J Appl Bacteriol. 1967 Apr;30(1):6–16. doi: 10.1111/j.1365-2672.1967.tb00272.x. [DOI] [PubMed] [Google Scholar]
  18. Beveridge T. J., Graham L. L. Surface layers of bacteria. Microbiol Rev. 1991 Dec;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Beveridge T. J. Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol. 1981;72:229–317. doi: 10.1016/s0074-7696(08)61198-5. [DOI] [PubMed] [Google Scholar]
  20. Bhunia A. K., Basu N. K., Roy D., Chakrabarti A., Banerjee S. K. Growth, chlorophyll a content, nitrogen-fixing ability, and certain metabolic activities of Nostoc muscorum: effect of methylparathion and benthiocarb. Bull Environ Contam Toxicol. 1991 Jul;47(1):43–50. doi: 10.1007/BF01689451. [DOI] [PubMed] [Google Scholar]
  21. Bhunia A. K., Roy D., Basu N. K., Chakrabarti A., Banerjee S. K. Response of enzymes involved in the processes of antioxidation towards benthiocarb and methylparathion in cyanobacteria Nostoc muscorum. Bull Environ Contam Toxicol. 1991 Aug;47(2):266–271. doi: 10.1007/BF01688650. [DOI] [PubMed] [Google Scholar]
  22. Blom A., Harder W., Matin A. Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol. 1992 Jan;58(1):331–334. doi: 10.1128/aem.58.1.331-334.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  24. Bolen E. J., Sando J. J. Effect of phospholipid unsaturation on protein kinase C activation. Biochemistry. 1992 Jun 30;31(25):5945–5951. doi: 10.1021/bi00140a034. [DOI] [PubMed] [Google Scholar]
  25. Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 1985 Dec;49(4):359–378. doi: 10.1128/mr.49.4.359-378.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bowles L. K., Ellefson W. L. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol. 1985 Nov;50(5):1165–1170. doi: 10.1128/aem.50.5.1165-1170.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Brenner R. R. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res. 1984;23(2):69–96. doi: 10.1016/0163-7827(84)90008-0. [DOI] [PubMed] [Google Scholar]
  28. Brodkorb T. S., Legge R. L. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Sep;58(9):3117–3121. doi: 10.1128/aem.58.9.3117-3121.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Brown M. R., Collier P. J., Gilbert P. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother. 1990 Sep;34(9):1623–1628. doi: 10.1128/aac.34.9.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bruce L. J., Daugulis A. J. Solvent selection strategies for extractive biocatalysis. Biotechnol Prog. 1991 Mar-Apr;7(2):116–124. doi: 10.1021/bp00008a006. [DOI] [PubMed] [Google Scholar]
  31. Buttke T. M., Ingram L. O. Ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vitro. Arch Biochem Biophys. 1980 Sep;203(2):565–571. doi: 10.1016/0003-9861(80)90213-1. [DOI] [PubMed] [Google Scholar]
  32. Buttke T. M., Ingram L. O. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Biochemistry. 1978 Feb 21;17(4):637–644. doi: 10.1021/bi00597a012. [DOI] [PubMed] [Google Scholar]
  33. Calder J. A., Lader J. H. Effect of dissolved aromatic hydrocarbons on the growth of marine bacteria in batch culture. Appl Environ Microbiol. 1976 Jul;32(1):95–101. doi: 10.1128/aem.32.1.95-101.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Carlsen H. N., Degn H., Lloyd D. Effects of alcohols on the respiration and fermentation of aerated suspensions of baker's yeast. J Gen Microbiol. 1991 Dec;137(12):2879–2883. doi: 10.1099/00221287-137-12-2879. [DOI] [PubMed] [Google Scholar]
  35. Cerniglia C. E., Gibson D. T. Fungal oxidation of benzo[a]pyrene and (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Evidence for the formation of a benzo[a]pyrene 7,8-diol-9,10-epoxide. J Biol Chem. 1980 Jun 10;255(11):5159–5163. [PubMed] [Google Scholar]
  36. Cerniglia C. E., Gibson D. T. Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. J Biol Chem. 1979 Dec 10;254(23):12174–12180. [PubMed] [Google Scholar]
  37. Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 1984;30:31–71. doi: 10.1016/s0065-2164(08)70052-2. [DOI] [PubMed] [Google Scholar]
  38. Cherrington C. A., Hinton M., Mead G. C., Chopra I. Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol. 1991;32:87–108. doi: 10.1016/s0065-2911(08)60006-5. [DOI] [PubMed] [Google Scholar]
  39. Chiou J. S., Krishna P. R., Kamaya H., Ueda I. Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding. Biochim Biophys Acta. 1992 Oct 5;1110(2):225–233. doi: 10.1016/0005-2736(92)90363-q. [DOI] [PubMed] [Google Scholar]
  40. Clark D. P., Beard J. P. Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. J Gen Microbiol. 1979 Aug;113(2):267–274. doi: 10.1099/00221287-113-2-267. [DOI] [PubMed] [Google Scholar]
  41. Cohen B. E., Bangham A. D. Diffusion of small non-electrolytes across liposome membranes. Nature. 1972 Mar 24;236(5343):173–174. doi: 10.1038/236173a0. [DOI] [PubMed] [Google Scholar]
  42. Connell D. W., Schürmann G. Evaluation of various molecular parameters as predictors of bioconcentration in fish. Ecotoxicol Environ Saf. 1988 Jun;15(3):324–335. doi: 10.1016/0147-6513(88)90087-5. [DOI] [PubMed] [Google Scholar]
  43. Cornell B. A., Separovic F. Membrane thickness and acyl chain length. Biochim Biophys Acta. 1983 Aug 24;733(1):189–193. doi: 10.1016/0005-2736(83)90106-2. [DOI] [PubMed] [Google Scholar]
  44. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Cruden D. L., Wolfram J. H., Rogers R. D., Gibson D. T. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl Environ Microbiol. 1992 Sep;58(9):2723–2729. doi: 10.1128/aem.58.9.2723-2729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cruzeiro-Hansson L., Mouritsen O. G. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta. 1988 Sep 15;944(1):63–72. doi: 10.1016/0005-2736(88)90316-1. [DOI] [PubMed] [Google Scholar]
  47. De Vrij W., Bulthuis R. A., Konings W. N. Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species. J Bacteriol. 1988 May;170(5):2359–2366. doi: 10.1128/jb.170.5.2359-2366.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. De Young L. R., Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry. 1988 Jul 12;27(14):5281–5289. doi: 10.1021/bi00414a050. [DOI] [PubMed] [Google Scholar]
  49. Diamond J. M., Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):121–154. doi: 10.1007/BF01870176. [DOI] [PubMed] [Google Scholar]
  50. Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev. 1987 Sep;51(3):320–340. doi: 10.1128/mr.51.3.320-340.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Dionigi C. P., Millie D. F., Johnsen P. B. Effects of farnesol and the off-flavor derivative geosmin on Streptomyces tendae. Appl Environ Microbiol. 1991 Dec;57(12):3429–3432. doi: 10.1128/aem.57.12.3429-3432.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Dombek K. M., Ingram L. O. Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol. 1984 Jan;157(1):233–239. doi: 10.1128/jb.157.1.233-239.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Driessen A. J., Hellingwerf K. J., Konings W. N. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J Biol Chem. 1987 Sep 15;262(26):12438–12443. [PubMed] [Google Scholar]
  54. Enomoto S., Kashiwayanagi M., Kurihara K. Liposomes having high sensitivity to odorants. Biochim Biophys Acta. 1991 Feb 11;1062(1):7–12. doi: 10.1016/0005-2736(91)90327-5. [DOI] [PubMed] [Google Scholar]
  55. Eyring H. Untangling biological reactions. Science. 1966 Dec 30;154(3757):1609–1613. doi: 10.1126/science.154.3757.1609. [DOI] [PubMed] [Google Scholar]
  56. Farge E., Bitbol M., Devaux P. F. Biomembrane elastic response to intercalation of amphiphiles. Eur Biophys J. 1990;19(2):69–72. doi: 10.1007/BF00185088. [DOI] [PubMed] [Google Scholar]
  57. Fay J. P., Farías R. N. Inhibitory action of a non-metabolizable fatty acid on the growth of Escherichia coli: role of metabolism and outer membrane integrity. J Bacteriol. 1977 Dec;132(3):790–795. doi: 10.1128/jb.132.3.790-795.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fiechter A. Biosurfactants: moving towards industrial application. Trends Biotechnol. 1992 Jun;10(6):208–217. doi: 10.1016/0167-7799(92)90215-h. [DOI] [PubMed] [Google Scholar]
  59. Florin I., Rutberg L., Curvall M., Enzell C. R. Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology. 1980;15(3):219–232. doi: 10.1016/0300-483x(80)90055-4. [DOI] [PubMed] [Google Scholar]
  60. Foght J. M., Gutnick D. L., Westlake D. W. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol. 1989 Jan;55(1):36–42. doi: 10.1128/aem.55.1.36-42.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Franks N. P., Lieb W. R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985 Jul 25;316(6026):349–351. doi: 10.1038/316349a0. [DOI] [PubMed] [Google Scholar]
  62. Franks N. P., Lieb W. R. Where do general anaesthetics act? Nature. 1978 Jul 27;274(5669):339–342. doi: 10.1038/274339a0. [DOI] [PubMed] [Google Scholar]
  63. Freese E., Sheu C. W., Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973 Feb 2;241(5388):321–325. doi: 10.1038/241321a0. [DOI] [PubMed] [Google Scholar]
  64. Gibson D. T., Cardini G. E., Maseles F. C., Kallio R. E. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry. 1970 Mar 31;9(7):1631–1635. doi: 10.1021/bi00809a024. [DOI] [PubMed] [Google Scholar]
  65. Gibson D. T., Gschwendt B., Yeh W. K., Kobal V. M. Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. Biochemistry. 1973 Apr 10;12(8):1520–1528. doi: 10.1021/bi00732a008. [DOI] [PubMed] [Google Scholar]
  66. Gill C. O., Ratledge C. Effect of n-alkanes on the transport of glucose in Candida sp. strain 107. Biochem J. 1972 Apr;127(3):59P–60P. doi: 10.1042/bj1270059pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  68. Groenewegen P. E., Driessen A. J., Konings W. N., de Bont J. A. Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J Bacteriol. 1990 Jan;172(1):419–423. doi: 10.1128/jb.172.1.419-423.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Guckert J. B., Hood M. A., White D. C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol. 1986 Oct;52(4):794–801. doi: 10.1128/aem.52.4.794-801.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Guilfoile P. G., Hutchinson C. R. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8553–8557. doi: 10.1073/pnas.88.19.8553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Hansch C. Comparative structure-activity relationships. Prog Clin Biol Res. 1989;291:23–30. [PubMed] [Google Scholar]
  72. Hansch C. Structure-activity relationships of chemical mutagens and carcinogens. Sci Total Environ. 1991 Dec;109-110:17–29. doi: 10.1016/0048-9697(91)90167-d. [DOI] [PubMed] [Google Scholar]
  73. Harold F. M., Van Brunt J. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science. 1977 Jul 22;197(4301):372–373. doi: 10.1126/science.69317. [DOI] [PubMed] [Google Scholar]
  74. Hartmans S., van der Werf M. J., de Bont J. A. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol. 1990 May;56(5):1347–1351. doi: 10.1128/aem.56.5.1347-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Heipieper H. J., Diefenbach R., Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol. 1992 Jun;58(6):1847–1852. doi: 10.1128/aem.58.6.1847-1852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Heipieper H. J., Keweloh H., Rehm H. J. Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol. 1991 Apr;57(4):1213–1217. doi: 10.1128/aem.57.4.1213-1217.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Heipieper H. J., de Bont J. A. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol. 1994 Dec;60(12):4440–4444. doi: 10.1128/aem.60.12.4440-4444.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  79. Hellingwerf K. J., Konings W. N. The energy flow in bacteria: the main free energy intermediates and their regulatory role. Adv Microb Physiol. 1985;26:125–154. doi: 10.1016/s0065-2911(08)60396-3. [DOI] [PubMed] [Google Scholar]
  80. Hommel R. K. Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation. 1990;1(2-3):107–119. doi: 10.1007/BF00058830. [DOI] [PubMed] [Google Scholar]
  81. Hugo W. B. The mode of action of antibacterial agents. J Appl Bacteriol. 1967 Apr;30(1):17–50. doi: 10.1111/j.1365-2672.1967.tb00273.x. [DOI] [PubMed] [Google Scholar]
  82. Hägerstrand H., Isomaa B. Vesiculation induced by amphiphiles in erythrocytes. Biochim Biophys Acta. 1989 Jul 10;982(2):179–186. doi: 10.1016/0005-2736(89)90053-9. [DOI] [PubMed] [Google Scholar]
  83. In 't Veld G., Driessen A. J., Konings W. N. Effect of the unsaturation of phospholipid acyl chains on leucine transport of Lactococcus lactis and membrane permeability. Biochim Biophys Acta. 1992 Jul 8;1108(1):31–39. doi: 10.1016/0005-2736(92)90111-x. [DOI] [PubMed] [Google Scholar]
  84. In 't Veld G., Driessen A. J., Konings W. N. Effect of the unsaturation of phospholipid acyl chains on leucine transport of Lactococcus lactis and membrane permeability. Biochim Biophys Acta. 1992 Jul 8;1108(1):31–39. doi: 10.1016/0005-2736(92)90111-x. [DOI] [PubMed] [Google Scholar]
  85. In 't Veld G., Driessen A. J., Op den Kamp J. A., Konings W. N. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis. Biochim Biophys Acta. 1991 Jun 18;1065(2):203–212. doi: 10.1016/0005-2736(91)90231-v. [DOI] [PubMed] [Google Scholar]
  86. In 't Veld G., de Vrije T., Driessen A. J., Konings W. N. Acidic phospholipids are required during solubilization of amino acid transport systems of Lactococcus lactis. Biochim Biophys Acta. 1992 Mar 2;1104(2):250–256. doi: 10.1016/0005-2736(92)90037-m. [DOI] [PubMed] [Google Scholar]
  87. Ingram L. O. Adaptation of membrane lipids to alcohols. J Bacteriol. 1976 Feb;125(2):670–678. doi: 10.1128/jb.125.2.670-678.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Ingram L. O., Buttke T. M. Effects of alcohols on micro-organisms. Adv Microb Physiol. 1984;25:253–300. doi: 10.1016/s0065-2911(08)60294-5. [DOI] [PubMed] [Google Scholar]
  89. Ingram L. O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol. 1977 May;33(5):1233–1236. doi: 10.1128/aem.33.5.1233-1236.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Inoue A., Yamamoto M., Horikoshi K. Pseudomonas putida Which Can Grow in the Presence of Toluene. Appl Environ Microbiol. 1991 May;57(5):1560–1562. doi: 10.1128/aem.57.5.1560-1562.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Isomaa B., Hägerstrand H., Paatero G., Engblom A. C. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim Biophys Acta. 1986 Sep 11;860(3):510–524. doi: 10.1016/0005-2736(86)90548-1. [DOI] [PubMed] [Google Scholar]
  92. Jackson R. W., DeMoss J. A. Effects of toluene on Escherichia coli. J Bacteriol. 1965 Nov;90(5):1420–1425. doi: 10.1128/jb.90.5.1420-1425.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Janes N., Hsu J. W., Rubin E., Taraschi T. F. Nature of alcohol and anesthetic action on cooperative membrane equilibria. Biochemistry. 1992 Oct 6;31(39):9467–9472. doi: 10.1021/bi00154a020. [DOI] [PubMed] [Google Scholar]
  94. Jarlier V., Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994 Oct 15;123(1-2):11–18. doi: 10.1111/j.1574-6968.1994.tb07194.x. [DOI] [PubMed] [Google Scholar]
  95. Jones D. T., Woods D. R. Acetone-butanol fermentation revisited. Microbiol Rev. 1986 Dec;50(4):484–524. doi: 10.1128/mr.50.4.484-524.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kalmanzon E., Zlotkin E., Cohen R., Barenholz Y. Liposomes as a model for the study of the mechanism of fish toxicity of sodium dodecyl sulfate in sea water. Biochim Biophys Acta. 1992 Jan 10;1103(1):148–156. doi: 10.1016/0005-2736(92)90068-w. [DOI] [PubMed] [Google Scholar]
  97. Kellermayer M., Ludány A., Miseta A., Koszegi T., Berta G., Bogner P., Hazlewood C. F., Cameron I. L., Wheatley D. N. Release of potassium, lipids, and proteins from nonionic detergent treated chicken red blood cells. J Cell Physiol. 1994 May;159(2):197–204. doi: 10.1002/jcp.1041590202. [DOI] [PubMed] [Google Scholar]
  98. Keweloh H., Weyrauch G., Rehm H. J. Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol. 1990 Apr;33(1):66–71. doi: 10.1007/BF00170572. [DOI] [PubMed] [Google Scholar]
  99. King G. I., Jacobs R. E., White S. H. Hexane dissolved in dioleoyllecithin bilayers has a partial molar volume of approximately zero. Biochemistry. 1985 Aug 13;24(17):4637–4645. doi: 10.1021/bi00338a024. [DOI] [PubMed] [Google Scholar]
  100. Konings W. N., Poolman B., Driessen A. J. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992 Feb;8(2):93–108. doi: 10.1111/j.1574-6968.1992.tb04959.x. [DOI] [PubMed] [Google Scholar]
  101. Koukou A. I., Tsoukatos D., Drainas C. Effect of ethanol on the phospholipid and fatty acid content of Schizosaccharomyces pombe membranes. J Gen Microbiol. 1990 Jul;136(7):1271–1277. doi: 10.1099/00221287-136-7-1271. [DOI] [PubMed] [Google Scholar]
  102. Krajewski-Bertrand M. A., Milon A., Nakatani Y., Ourisson G. The interaction of various cholesterol 'ancestors' with lipid membranes: a 2H-NMR study on oriented bilayers. Biochim Biophys Acta. 1992 Apr 13;1105(2):213–220. doi: 10.1016/0005-2736(92)90197-t. [DOI] [PubMed] [Google Scholar]
  103. Krulwich T. A., Quirk P. G., Guffanti A. A. Uncoupler-resistant mutants of bacteria. Microbiol Rev. 1990 Mar;54(1):52–65. doi: 10.1128/mr.54.1.52-65.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Könemann H. Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationship for 50 industrial pollutants. Toxicology. 1981;19(3):209–221. doi: 10.1016/0300-483x(81)90130-x. [DOI] [PubMed] [Google Scholar]
  105. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4521–4528. doi: 10.1021/bi00665a029. [DOI] [PubMed] [Google Scholar]
  106. Leo A., Hansch C., Jow P. Y. Dependence of hydrophobicity of apolar molecules on their molecular volume. J Med Chem. 1976 May;19(5):611–615. doi: 10.1021/jm00227a007. [DOI] [PubMed] [Google Scholar]
  107. Levy S. B. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992 Apr;36(4):695–703. doi: 10.1128/aac.36.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Leão C., Van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Jul 11;774(1):43–48. doi: 10.1016/0005-2736(84)90272-4. [DOI] [PubMed] [Google Scholar]
  109. Li G. C., Hahn G. M. Ethanol-induced tolerance to heat and to adriamycin. Nature. 1978 Aug 17;274(5672):699–701. doi: 10.1038/274699a0. [DOI] [PubMed] [Google Scholar]
  110. Lindgren S. E., Dobrogosz W. J. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev. 1990 Sep;7(1-2):149–163. doi: 10.1111/j.1574-6968.1990.tb04885.x. [DOI] [PubMed] [Google Scholar]
  111. Locher H. H., Poolman B., Cook A. M., Konings W. N. Uptake of 4-toluene sulfonate by Comamonas testosteroni T-2. J Bacteriol. 1993 Feb;175(4):1075–1080. doi: 10.1128/jb.175.4.1075-1080.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lomovskaya O., Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938–8942. doi: 10.1073/pnas.89.19.8938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Luxnat M., Galla H. J. Partition of chlorpromazine into lipid bilayer membranes: the effect of membrane structure and composition. Biochim Biophys Acta. 1986 Apr 14;856(2):274–282. doi: 10.1016/0005-2736(86)90037-4. [DOI] [PubMed] [Google Scholar]
  114. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  115. Machleidt H., Roth S., Seeman P. The hydrophobic expansion of erythrocyte membranes by the phenol anesthetics. Biochim Biophys Acta. 1972 Jan 17;255(1):178–189. doi: 10.1016/0005-2736(72)90020-x. [DOI] [PubMed] [Google Scholar]
  116. Mahaffey W. R., Gibson D. T., Cerniglia C. E. Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl Environ Microbiol. 1988 Oct;54(10):2415–2423. doi: 10.1128/aem.54.10.2415-2423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Maher P., Singer S. J. Structural changes in membranes produced by the binding of small amphipathic molecules. Biochemistry. 1984 Jan 17;23(2):232–240. doi: 10.1021/bi00297a010. [DOI] [PubMed] [Google Scholar]
  118. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Martínez de Tejada G., Moriyón I. The outer membranes of Brucella spp. are not barriers to hydrophobic permeants. J Bacteriol. 1993 Aug;175(16):5273–5275. doi: 10.1128/jb.175.16.5273-5275.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Matthews R. A low-fat theory of anesthesia. Science. 1992 Jan 10;255(5041):156–157. doi: 10.1126/science.1553540. [DOI] [PubMed] [Google Scholar]
  121. McIntosh T. J., Simon S. A., MacDonald R. C. The organization of n-alkanes in lipid bilayers. Biochim Biophys Acta. 1980 Apr 24;597(3):445–463. doi: 10.1016/0005-2736(80)90219-9. [DOI] [PubMed] [Google Scholar]
  122. Midgley M. The phosphonium ion efflux system of Escherichia coli: relationship to the ethidium efflux system and energetic studies. J Gen Microbiol. 1986 Nov;132(11):3187–3193. doi: 10.1099/00221287-132-11-3187. [DOI] [PubMed] [Google Scholar]
  123. Miller R. M., Bartha R. Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol. 1989 Feb;55(2):269–274. doi: 10.1128/aem.55.2.269-274.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Miozzari G. F., Niederberger P., Hütter R. Permeabilization of microorganisms by Triton X-100. Anal Biochem. 1978 Oct 1;90(1):220–233. doi: 10.1016/0003-2697(78)90026-x. [DOI] [PubMed] [Google Scholar]
  125. Mishra P., Prasad R. Role of phospholipid head groups in ethanol tolerance of Saccharomyces cerevisiae. J Gen Microbiol. 1988 Dec;134(12):3205–3211. doi: 10.1099/00221287-134-12-3205. [DOI] [PubMed] [Google Scholar]
  126. Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–1159. doi: 10.1126/science.388618. [DOI] [PubMed] [Google Scholar]
  127. Molenaar D., Bolhuis H., Abee T., Poolman B., Konings W. N. The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. J Bacteriol. 1992 May;174(10):3118–3124. doi: 10.1128/jb.174.10.3118-3124.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Monti J. A., Christian S. T., Schutzbach J. S. Effects of dolichol on membrane permeability. Biochim Biophys Acta. 1987 Nov 27;905(1):133–142. doi: 10.1016/0005-2736(87)90017-4. [DOI] [PubMed] [Google Scholar]
  129. Moss G. W., Lieb W. R., Franks N. P. Anesthetic inhibition of firefly luciferase, a protein model for general anesthesia, does not exhibit pressure reversal. Biophys J. 1991 Dec;60(6):1309–1314. doi: 10.1016/S0006-3495(91)82168-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Nickerson K. W., Aspedon A. Detergent-shock response in enteric bacteria. Mol Microbiol. 1992 Apr;6(8):957–961. doi: 10.1111/j.1365-2958.1992.tb02161.x. [DOI] [PubMed] [Google Scholar]
  131. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  132. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
  135. Oberbremer A., Müller-Hurtig R., Wagner F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol. 1990 Jan;32(4):485–489. doi: 10.1007/BF00903788. [DOI] [PubMed] [Google Scholar]
  136. Odberg-Ferragut C., Espigares M., Dive D. Stress protein synthesis, a potential toxicity marker in Escherichia coli. Ecotoxicol Environ Saf. 1991 Jun;21(3):275–282. doi: 10.1016/0147-6513(91)90066-x. [DOI] [PubMed] [Google Scholar]
  137. Ogram A. V., Jessup R. E., Ou L. T., Rao P. S. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl Environ Microbiol. 1985 Mar;49(3):582–587. doi: 10.1128/aem.49.3.582-587.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Okuyama H., Okajima N., Sasaki S., Higashi S., Murata N. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta. 1991 Jun 19;1084(1):13–20. doi: 10.1016/0005-2760(91)90049-n. [DOI] [PubMed] [Google Scholar]
  139. Osborne S. J., Leaver J., Turner M. K., Dunnill P. Correlation of biocatalytic activity in an organic-aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol. 1990 Apr;12(4):281–291. doi: 10.1016/0141-0229(90)90100-5. [DOI] [PubMed] [Google Scholar]
  140. Pahlman R., Pelkonen O. Mutagenicity studies of different polycyclic aromatic hydrocarbons: the significance of enzymatic factors and molecular structure. Carcinogenesis. 1987 Jun;8(6):773–778. doi: 10.1093/carcin/8.6.773. [DOI] [PubMed] [Google Scholar]
  141. Perona E., Marco E., Orús M. I. Effects of dimethoate on N2-fixing cyanobacterium Anabaena PCC 7119. Bull Environ Contam Toxicol. 1991 Nov;47(5):758–763. doi: 10.1007/BF01701146. [DOI] [PubMed] [Google Scholar]
  142. Plésiat P., Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol. 1992 May;6(10):1323–1333. doi: 10.1111/j.1365-2958.1992.tb00853.x. [DOI] [PubMed] [Google Scholar]
  143. Poolman B., Driessen A. J., Konings W. N. Regulation of solute transport in streptococci by external and internal pH values. Microbiol Rev. 1987 Dec;51(4):498–508. doi: 10.1128/mr.51.4.498-508.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  145. Poolman B. Precursor/product antiport in bacteria. Mol Microbiol. 1990 Oct;4(10):1629–1636. doi: 10.1111/j.1365-2958.1990.tb00539.x. [DOI] [PubMed] [Google Scholar]
  146. ROSENKRANZ H. S., CARR H. S., ROSE H. M. PHENETHYL ALCOHOL. I. EFFECT ON MACROMOLECULAR SYNTHESIS OF ESCHERICHIA COLI. J Bacteriol. 1965 May;89:1354–1369. doi: 10.1128/jb.89.5.1354-1369.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Ramsden J. J. Partition coefficients of drugs in bilayer lipid membranes. Experientia. 1993 Aug 15;49(8):688–692. doi: 10.1007/BF01923952. [DOI] [PubMed] [Google Scholar]
  148. Rohmer M., Bouvier P., Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci U S A. 1979 Feb;76(2):847–851. doi: 10.1073/pnas.76.2.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Rosso J., Zachowski A., Devaux P. F. Influence of chlorpromazine on the transverse mobility of phospholipids in the human erythrocyte membrane: relation to shape changes. Biochim Biophys Acta. 1988 Jul 21;942(2):271–279. doi: 10.1016/0005-2736(88)90029-6. [DOI] [PubMed] [Google Scholar]
  150. Rottenberg H., Hashimoto K. Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Biochemistry. 1986 Apr 8;25(7):1747–1755. doi: 10.1021/bi00355a045. [DOI] [PubMed] [Google Scholar]
  151. Rottenberg H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan. Biochemistry. 1992 Oct 6;31(39):9473–9481. doi: 10.1021/bi00154a021. [DOI] [PubMed] [Google Scholar]
  152. Russell A. D. Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol. 1991 Sep;71(3):191–201. doi: 10.1111/j.1365-2672.1991.tb04447.x. [DOI] [PubMed] [Google Scholar]
  153. SKOU J. C. Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve-tissue lipoids. Biochim Biophys Acta. 1958 Dec;30(3):625–629. doi: 10.1016/0006-3002(58)90110-0. [DOI] [PubMed] [Google Scholar]
  154. Salmond C. V., Kroll R. G., Booth I. R. The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol. 1984 Nov;130(11):2845–2850. doi: 10.1099/00221287-130-11-2845. [DOI] [PubMed] [Google Scholar]
  155. Sandermann H., Jr Induction of lipid-protein mismatch by xenobiotics with general membrane targets. Biochim Biophys Acta. 1993 Aug 15;1150(2):130–133. doi: 10.1016/0005-2736(93)90081-a. [DOI] [PubMed] [Google Scholar]
  156. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  157. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem. 1980 Apr 25;255(8):3748–3756. [PubMed] [Google Scholar]
  158. Schneider H. The intramembrane location of alcohol anesthetics. Biochim Biophys Acta. 1968 Dec 10;163(4):451–458. doi: 10.1016/0005-2736(68)90074-6. [DOI] [PubMed] [Google Scholar]
  159. Scholes P., Mitchell P., Moyle J. The polarity of proton translocation in some photosynthetic microorganisms. Eur J Biochem. 1969 Apr;8(3):450–454. doi: 10.1111/j.1432-1033.1969.tb00548.x. [DOI] [PubMed] [Google Scholar]
  160. Schwichtenhövel C., Deuticke B., Haest C. W. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta. 1992 Oct 19;1111(1):35–44. doi: 10.1016/0005-2736(92)90271-m. [DOI] [PubMed] [Google Scholar]
  161. Scott C. C., Finnerty W. R. A comparative analysis of the ultrastructure of hydrocarbon-oxidizing micro-organisms. J Gen Microbiol. 1976 Jun;94(2):342–350. doi: 10.1099/00221287-94-2-342. [DOI] [PubMed] [Google Scholar]
  162. Scott C. C., Finnerty W. R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol. 1976 Jul;127(1):481–489. doi: 10.1128/jb.127.1.481-489.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Scott C. C., Makula S. R., Finnerty W. R. Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp. J Bacteriol. 1976 Jul;127(1):469–480. doi: 10.1128/jb.127.1.469-480.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Seeman P., Kwant W. O., Sauks T. Membrane expansion of erythrocyte ghosts by tranquilizers and anesthetics. Biochim Biophys Acta. 1969;183(3):499–511. doi: 10.1016/0005-2736(69)90164-3. [DOI] [PubMed] [Google Scholar]
  165. Seeman P., Roth S. General anesthetics expand cell membranes at surgical concentrations. Biochim Biophys Acta. 1972 Jan 17;255(1):171–177. doi: 10.1016/0005-2736(72)90019-3. [DOI] [PubMed] [Google Scholar]
  166. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  167. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Shimooka T., Shibata A., Terada H. The local anesthetic tetracaine destabilizes membrane structure by interaction with polar headgroups of phospholipids. Biochim Biophys Acta. 1992 Mar 2;1104(2):261–268. doi: 10.1016/0005-2736(92)90039-o. [DOI] [PubMed] [Google Scholar]
  169. Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
  170. Sikkema J., Poolman B., Konings W. N., de Bont J. A. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J Bacteriol. 1992 May;174(9):2986–2992. doi: 10.1128/jb.174.9.2986-2992.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Sikkema J., de Bont J. A., Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994 Mar 18;269(11):8022–8028. [PubMed] [Google Scholar]
  172. Silva M. T., Sousa J. C., Polónia J. J., Macedo P. M. Effects of local anesthetics on bacterial cells. J Bacteriol. 1979 Jan;137(1):461–468. doi: 10.1128/jb.137.1.461-468.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Silver S., Wendt L. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J Bacteriol. 1967 Feb;93(2):560–566. doi: 10.1128/jb.93.2.560-566.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Simon S. A., Stone W. L., Bennett P. B. Can regular solution theory be applied to lipid bilayer membranes? Biochim Biophys Acta. 1979 Jan 5;550(1):38–47. doi: 10.1016/0005-2736(79)90113-5. [DOI] [PubMed] [Google Scholar]
  175. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Sinensky M. Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol. 1971 May;106(2):449–455. doi: 10.1128/jb.106.2.449-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  178. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  179. Singh A. K., Gaur J. P. Inhibition of NO3-, NH4+, and PO4(3-) uptake in Anabaena doliolum exposed to a petroleum oil. Ecotoxicol Environ Saf. 1991 Apr;21(2):103–108. doi: 10.1016/0147-6513(91)90013-f. [DOI] [PubMed] [Google Scholar]
  180. Singh A. K., Kumar H. D. Inhibitory effect of petroleum oil on photosynthetic electron transport system in the cyanobacterium Anabaena doliolum. Bull Environ Contam Toxicol. 1991 Dec;47(6):890–895. doi: 10.1007/BF01689520. [DOI] [PubMed] [Google Scholar]
  181. Slater S. J., Cox K. J., Lombardi J. V., Ho C., Kelly M. B., Rubin E., Stubbs C. D. Inhibition of protein kinase C by alcohols and anaesthetics. Nature. 1993 Jul 1;364(6432):82–84. doi: 10.1038/364082a0. [DOI] [PubMed] [Google Scholar]
  182. Sleytr U. B., Messner P. Crystalline surface layers in procaryotes. J Bacteriol. 1988 Jul;170(7):2891–2897. doi: 10.1128/jb.170.7.2891-2897.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Sleytr U. B., Messner P. Crystalline surface layers on bacteria. Annu Rev Microbiol. 1983;37:311–339. doi: 10.1146/annurev.mi.37.100183.001523. [DOI] [PubMed] [Google Scholar]
  184. Smith M. R. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation. 1990;1(2-3):191–206. doi: 10.1007/BF00058836. [DOI] [PubMed] [Google Scholar]
  185. Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Strittmatter P., Rogers M. J. Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2658–2661. doi: 10.1073/pnas.72.7.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Stucki G., Alexander M. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol. 1987 Feb;53(2):292–297. doi: 10.1128/aem.53.2.292-297.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Subba-Rao R. V., Alexander M. Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl Environ Microbiol. 1982 Sep;44(3):659–668. doi: 10.1128/aem.44.3.659-668.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Sutherland J. B. Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol. 1992 Jan;9(1):53–61. doi: 10.1007/BF01576368. [DOI] [PubMed] [Google Scholar]
  190. Suutari M., Liukkonen K., Laakso S. Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol. 1990 Aug;136(8):1469–1474. doi: 10.1099/00221287-136-8-1469. [DOI] [PubMed] [Google Scholar]
  191. Sykes G. Disinfection--how, why, when, where? J Appl Bacteriol. 1967 Apr;30(1):1–5. doi: 10.1111/j.1365-2672.1967.tb00271.x. [DOI] [PubMed] [Google Scholar]
  192. TREICK R. W., KONETZKA W. A. PHYSIOLOGICAL STATE OF ESCHERICHIA COLI AND THE INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS BY PHENETHYL ALCOHOL. J Bacteriol. 1964 Dec;88:1580–1584. doi: 10.1128/jb.88.6.1580-1584.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Tennent J. M., Lyon B. R., Midgley M., Jones I. G., Purewal A. S., Skurray R. A. Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. J Gen Microbiol. 1989 Jan;135(1):1–10. doi: 10.1099/00221287-135-1-1. [DOI] [PubMed] [Google Scholar]
  194. Thayer J. R., Wheelis M. L. Active transport of benzoate in Pseudomonas putida. J Gen Microbiol. 1982 Aug;128(8):1749–1753. doi: 10.1099/00221287-128-8-1749. [DOI] [PubMed] [Google Scholar]
  195. Thomas D. S., Rose A. H. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Arch Microbiol. 1979 Jul;122(1):49–55. doi: 10.1007/BF00408045. [DOI] [PubMed] [Google Scholar]
  196. Thomas J. M., Yordy J. R., Amador J. A., Alexander M. Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl Environ Microbiol. 1986 Aug;52(2):290–296. doi: 10.1128/aem.52.2.290-296.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol. 1994 Jan;60(1):258–263. doi: 10.1128/aem.60.1.258-263.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Tubbing D. M., Admiraal W. Inhibition of bacterial and phytoplanktonic metabolic activity in the lower River Rhine by ditallowdimethylammonium chloride. Appl Environ Microbiol. 1991 Dec;57(12):3616–3622. doi: 10.1128/aem.57.12.3616-3622.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Uribe S., Ramirez J., Peña A. Effects of beta-pinene on yeast membrane functions. J Bacteriol. 1985 Mar;161(3):1195–1200. doi: 10.1128/jb.161.3.1195-1200.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Uribe S., Rangel P., Espínola G., Aguirre G. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria. Appl Environ Microbiol. 1990 Jul;56(7):2114–2119. doi: 10.1128/aem.56.7.2114-2119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Vanderkooi J. M., Callis J. B. Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry. 1974 Sep 10;13(19):4000–4006. doi: 10.1021/bi00716a028. [DOI] [PubMed] [Google Scholar]
  202. Verma S. P., Rastogi A. Organic pesticides modify lipid-lipid and lipid-protein domains in model membranes. A laser Raman study. Biochim Biophys Acta. 1990 Aug 10;1027(1):59–64. doi: 10.1016/0005-2736(90)90048-s. [DOI] [PubMed] [Google Scholar]
  203. Verma S. P., Singhal A. Low levels of the pesticide, delta-hexachlorocyclohexane, lyses human erythrocytes and alters the organization of membrane lipids and proteins as revealed by Raman spectroscopy. Biochim Biophys Acta. 1991 Nov 18;1070(1):265–273. doi: 10.1016/0005-2736(91)90174-7. [DOI] [PubMed] [Google Scholar]
  204. Warth A. D. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae. Appl Environ Microbiol. 1991 Dec;57(12):3415–3417. doi: 10.1128/aem.57.12.3415-3417.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Warth A. D. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl Environ Microbiol. 1991 Dec;57(12):3410–3414. doi: 10.1128/aem.57.12.3410-3414.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Weber F. J., Isken S., de Bont J. A. Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology. 1994 Aug;140(Pt 8):2013–2017. doi: 10.1099/13500872-140-8-2013. [DOI] [PubMed] [Google Scholar]
  207. Weber F. J., Ooijkaas L. P., Schemen R. M., Hartmans S., de Bont J. A. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol. 1993 Oct;59(10):3502–3504. doi: 10.1128/aem.59.10.3502-3504.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Weissenfels W. D., Klewer H. J., Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol. 1992 Feb;36(5):689–696. doi: 10.1007/BF00183251. [DOI] [PubMed] [Google Scholar]
  209. White D. C., Dundas C. R. Effect of anaesthetics on emission of light by luminous bacteria. Nature. 1970 May 2;226(5244):456–458. doi: 10.1038/226456a0. [DOI] [PubMed] [Google Scholar]
  210. Williams D. E., Swango L. J., Wilt G. R., Worley S. D. Effect of organic N-halamines on selected membrane functions in intact Staphylococcus aureus cells. Appl Environ Microbiol. 1991 Apr;57(4):1121–1127. doi: 10.1128/aem.57.4.1121-1127.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Wimley W. C., White S. H. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry. 1993 Jun 29;32(25):6307–6312. doi: 10.1021/bi00076a001. [DOI] [PubMed] [Google Scholar]
  212. Witholt B., de Smet M. J., Kingma J., van Beilen J. B., Kok M., Lageveen R. G., Eggink G. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol. 1990 Feb;8(2):46–52. doi: 10.1016/0167-7799(90)90133-i. [DOI] [PubMed] [Google Scholar]
  213. Wodzinski R. S., Bertolini D. Physical state in which naphthalene and bibenzyl are utilized by bacteria. Appl Microbiol. 1972 Jun;23(6):1077–1081. doi: 10.1128/am.23.6.1077-1081.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Wodzinski R. S., Coyle J. E. Physical state of phenanthrene for utilization by bacteria. Appl Microbiol. 1974 Jun;27(6):1081–1084. doi: 10.1128/am.27.6.1081-1084.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Woldringh C. L. Effects of toluene and phenethyl alcohol on the ultrastructure of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1359–1361. doi: 10.1128/jb.114.3.1359-1361.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Woldringh C. L., van Iterson W. Effects of treatment with sodium dodecyl sulfate on the ultrastructure of Escherichia coli. J Bacteriol. 1972 Sep;111(3):801–813. doi: 10.1128/jb.111.3.801-813.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Womack M. D., Kendall D. A., MacDonald R. C. Detergent effects on enzyme activity and solubilization of lipid bilayer membranes. Biochim Biophys Acta. 1983 Sep 7;733(2):210–215. doi: 10.1016/0005-2736(83)90524-2. [DOI] [PubMed] [Google Scholar]
  218. Yeagle P. L. Lipid regulation of cell membrane structure and function. FASEB J. 1989 May;3(7):1833–1842. [PubMed] [Google Scholar]
  219. Yeh G. C., Lopaczynska J., Poore C. M., Phang J. M. A new functional role for P-glycoprotein: efflux pump for benzo(alpha)pyrene in human breast cancer MCF-7 cells. Cancer Res. 1992 Dec 1;52(23):6692–6695. [PubMed] [Google Scholar]
  220. Yen K. M., Serdar C. M. Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol. 1988;15(3):247–268. doi: 10.3109/10408418809104459. [DOI] [PubMed] [Google Scholar]
  221. Yoshida T., Taga K., Okabayashi H., Kamaya H., Ueda I. Proton flow along lipid bilayer surfaces: effect of halothane on the lateral surface conductance and membrane hydration. Biochim Biophys Acta. 1990 Sep 21;1028(1):95–102. doi: 10.1016/0005-2736(90)90270-x. [DOI] [PubMed] [Google Scholar]
  222. Yuli I., Wilbrandt W., Shinitzky M. Glucose transport through cell membranes of modified lipid fluidity. Biochemistry. 1981 Jul 21;20(15):4250–4256. doi: 10.1021/bi00518a003. [DOI] [PubMed] [Google Scholar]
  223. Zajjc J. E., Panchal C. J. Bio-emulsifiers. CRC Crit Rev Microbiol. 1976 Nov;5(1):39–66. doi: 10.3109/10408417609102309. [DOI] [PubMed] [Google Scholar]
  224. Zhang Y., Miller R. M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol. 1994 Jun;60(6):2101–2106. doi: 10.1128/aem.60.6.2101-2106.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Zhang Y., Miller R. M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 1992 Oct;58(10):3276–3282. doi: 10.1128/aem.58.10.3276-3282.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Zheng T., Driessen A. J., Konings W. N. Effect of cholesterol on the branched-chain amino acid transport system of Streptococcus cremoris. J Bacteriol. 1988 Jul;170(7):3194–3198. doi: 10.1128/jb.170.7.3194-3198.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. de Klerk H., van der Linden A. C. Bacterial degradation of cyclohexane. Participation of a co-oxidation reaction. Antonie Van Leeuwenhoek. 1974;40(1):7–15. doi: 10.1007/BF00394548. [DOI] [PubMed] [Google Scholar]
  228. de Smet M. J., Kingma J., Witholt B. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim Biophys Acta. 1978 Jan 4;506(1):64–80. doi: 10.1016/0005-2736(78)90435-2. [DOI] [PubMed] [Google Scholar]
  229. v Ravenswaay Claasen J. C., van der LINDEN A. C. Substrate specificity of the paraffin hydroxylase of Pseudomonas aeruginosa. Antonie Van Leeuwenhoek. 1971;37(3):339–352. doi: 10.1007/BF02218504. [DOI] [PubMed] [Google Scholar]
  230. van Loosdrecht M. C., Lyklema J., Norde W., Zehnder A. J. Influence of interfaces on microbial activity. Microbiol Rev. 1990 Mar;54(1):75–87. doi: 10.1128/mr.54.1.75-87.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES