Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1995 Jun;59(2):241–303. doi: 10.1128/mr.59.2.241-303.1995

Genetic map of Salmonella typhimurium, edition VIII.

K E Sanderson 1, A Hessel 1, K E Rudd 1
PMCID: PMC239362  PMID: 7603411

Abstract

We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.

Full Text

The Full Text of this article is available as a PDF (966.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulkarim F., Tuohy T. M., Buckingham R. H., Hughes D. Missense substitutions lethal to essential functions of EF-Tu. Biochimie. 1991 Dec;73(12):1457–1464. doi: 10.1016/0300-9084(91)90178-4. [DOI] [PubMed] [Google Scholar]
  2. Abouhamad W. N., Manson M., Gibson M. M., Higgins C. F. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol. 1991 May;5(5):1035–1047. doi: 10.1111/j.1365-2958.1991.tb01876.x. [DOI] [PubMed] [Google Scholar]
  3. Abshire K. Z., Neidhardt F. C. Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J Bacteriol. 1993 Jun;175(12):3734–3743. doi: 10.1128/jb.175.12.3734-3743.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adams D. E., Shekhtman E. M., Zechiedrich E. L., Schmid M. B., Cozzarelli N. R. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell. 1992 Oct 16;71(2):277–288. doi: 10.1016/0092-8674(92)90356-h. [DOI] [PubMed] [Google Scholar]
  5. Ailion M., Bobik T. A., Roth J. R. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J Bacteriol. 1993 Nov;175(22):7200–7208. doi: 10.1128/jb.175.22.7200-7208.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alami N., Hallenbeck P. C. Mutations that affect the regulation of phs in Salmonella typhimurium. J Gen Microbiol. 1992 Jun;138(6):1117–1122. doi: 10.1099/00221287-138-6-1117. [DOI] [PubMed] [Google Scholar]
  7. Alifano P., Ciampi M. S., Nappo A. G., Bruni C. B., Carlomagno M. S. In vivo analysis of the mechanisms responsible for strong transcriptional polarity in a "sense" mutant within an intercistronic region. Cell. 1988 Oct 21;55(2):351–360. doi: 10.1016/0092-8674(88)90058-x. [DOI] [PubMed] [Google Scholar]
  8. Alifano P., Piscitelli C., Blasi V., Rivellini F., Nappo A. G., Bruni C. B., Carlomagno M. S. Processing of a polycistronic mRNA requires a 5' cis element and active translation. Mol Microbiol. 1992 Mar;6(6):787–798. doi: 10.1111/j.1365-2958.1992.tb01529.x. [DOI] [PubMed] [Google Scholar]
  9. Alifano P., Rivellini F., Limauro D., Bruni C. B., Carlomagno M. S. A consensus motif common to all Rho-dependent prokaryotic transcription terminators. Cell. 1991 Feb 8;64(3):553–563. doi: 10.1016/0092-8674(91)90239-u. [DOI] [PubMed] [Google Scholar]
  10. Allen S. W., Senti-Willis A., Maloy S. R. DNA sequence of the putA gene from Salmonella typhimurium: a bifunctional membrane-associated dehydrogenase that binds DNA. Nucleic Acids Res. 1993 Apr 11;21(7):1676–1676. doi: 10.1093/nar/21.7.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Alpuche Aranda C. M., Swanson J. A., Loomis W. P., Miller S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10079–10083. doi: 10.1073/pnas.89.21.10079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Altmeyer R. M., McNern J. K., Bossio J. C., Rosenshine I., Finlay B. B., Galán J. E. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Mol Microbiol. 1993 Jan;7(1):89–98. doi: 10.1111/j.1365-2958.1993.tb01100.x. [DOI] [PubMed] [Google Scholar]
  13. Alvarez-Jacobs J., de la Garza M., Ortega M. V. Biochemical and genetic characterization of L-glutamate transport and utilization in Salmonella typhimurium LT-2 mutants. Biochem Genet. 1986 Apr;24(3-4):195–205. doi: 10.1007/BF00502788. [DOI] [PubMed] [Google Scholar]
  14. Anderson K. S., Miles E. W., Johnson K. A. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J Biol Chem. 1991 May 5;266(13):8020–8033. [PubMed] [Google Scholar]
  15. Andersson D. I. Involvement of the Arc system in redox regulation of the Cob operon in Salmonella typhimurium. Mol Microbiol. 1992 Jun;6(11):1491–1494. doi: 10.1111/j.1365-2958.1992.tb00869.x. [DOI] [PubMed] [Google Scholar]
  16. Andersson D. I., Roth J. R. Mutations affecting regulation of cobinamide biosynthesis in Salmonella typhimurium. J Bacteriol. 1989 Dec;171(12):6726–6733. doi: 10.1128/jb.171.12.6726-6733.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Andreadis A., Rosenthal E. R. The nucleotide sequence of leuB from Salmonella typhimurium. Biochim Biophys Acta. 1992 Jan 6;1129(2):228–230. doi: 10.1016/0167-4781(92)90493-j. [DOI] [PubMed] [Google Scholar]
  18. Archer C. D., Wang X., Elliott T. Mutants defective in the energy-conserving NADH dehydrogenase of Salmonella typhimurium identified by a decrease in energy-dependent proteolysis after carbon starvation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9877–9881. doi: 10.1073/pnas.90.21.9877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Artymiuk P. J., Rice D. W., Mitchell E. M., Willett P. Structural resemblance between the families of bacterial signal-transduction proteins and of G proteins revealed by graph theoretical techniques. Protein Eng. 1990 Oct;4(1):39–43. doi: 10.1093/protein/4.1.39. [DOI] [PubMed] [Google Scholar]
  20. Aulin M. R., Hughes D. Overproduction of release factor reduces spontaneous frameshifting and frameshift suppression by mutant elongation factor Tu. J Bacteriol. 1990 Dec;172(12):6721–6726. doi: 10.1128/jb.172.12.6721-6726.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Baer M., Altman S. A catalytic RNA and its gene from Salmonella typhimurium. Science. 1985 May 24;228(4702):999–1002. doi: 10.1126/science.2408335. [DOI] [PubMed] [Google Scholar]
  22. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank: current status. Nucleic Acids Res. 1994 Sep;22(17):3578–3580. [PMC free article] [PubMed] [Google Scholar]
  23. Bansal A., Dayton M. A., Zalkin H., Colman R. F. Affinity labeling of a glutamyl peptide in the coenzyme binding site of NADP+-specific glutamate dehydrogenase of Salmonella typhimurium by 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate. J Biol Chem. 1989 Jun 15;264(17):9827–9835. [PubMed] [Google Scholar]
  24. Bastin D. A., Stevenson G., Brown P. K., Haase A., Reeves P. R. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol. 1993 Mar;7(5):725–734. doi: 10.1111/j.1365-2958.1993.tb01163.x. [DOI] [PubMed] [Google Scholar]
  25. Batchelor R. A., Alifano P., Biffali E., Hull S. I., Hull R. A. Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: protein homology and functional complementation. J Bacteriol. 1992 Aug;174(16):5228–5236. doi: 10.1128/jb.174.16.5228-5236.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bauerle R., Hess J., French S. Anthranilate synthase-anthranilate phosphoribosyltransferase complex and subunits of Salmonella typhimurium. Methods Enzymol. 1987;142:366–386. doi: 10.1016/s0076-6879(87)42049-1. [DOI] [PubMed] [Google Scholar]
  27. Behlau I., Miller S. I. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol. 1993 Jul;175(14):4475–4484. doi: 10.1128/jb.175.14.4475-4484.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Benamira M., Singh U., Marnett L. J. Site-specific frameshift mutagenesis by a propanodeoxyguanosine adduct positioned in the (CpG)4 hot-spot of Salmonella typhimurium hisD3052 carried on an M13 vector. J Biol Chem. 1992 Nov 5;267(31):22392–22400. [PubMed] [Google Scholar]
  29. Benjamin W. H., Jr, Hall P., Briles D. E. A hemA mutation renders Salmonella typhimurium avirulent in mice, yet capable of eliciting protection against intravenous infection with S. typhimurium. Microb Pathog. 1991 Oct;11(4):289–295. doi: 10.1016/0882-4010(91)90033-7. [DOI] [PubMed] [Google Scholar]
  30. Benjamin W. H., Jr, Yother J., Hall P., Briles D. E. The Salmonella typhimurium locus mviA regulates virulence in Itys but not Ityr mice: functional mviA results in avirulence; mutant (nonfunctional) mviA results in virulence. J Exp Med. 1991 Nov 1;174(5):1073–1083. doi: 10.1084/jem.174.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Benner-Luger D., Boos W. The mglB sequence of Salmonella typhimurium LT2; promoter analysis by gene fusions and evidence for a divergently oriented gene coding for the mgl repressor. Mol Gen Genet. 1988 Nov;214(3):579–587. doi: 10.1007/BF00330498. [DOI] [PubMed] [Google Scholar]
  32. Benson N. R., Roth J. Suppressors of recB mutations in Salmonella typhimurium. Genetics. 1994 Sep;138(1):11–28. doi: 10.1093/genetics/138.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Best E. A., Bender R. A. Cloning of the Klebsiella aerogenes nac gene, which encodes a factor required for nitrogen regulation of the histidine utilization (hut) operons in Salmonella typhimurium. J Bacteriol. 1990 Dec;172(12):7043–7048. doi: 10.1128/jb.172.12.7043-7048.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Beyer W., Geue L. Characterization of the virulence regions in the plasmids of three live Salmonella vaccines. Zentralbl Bakteriol. 1992 Jun;277(1):10–21. doi: 10.1016/s0934-8840(11)80865-0. [DOI] [PubMed] [Google Scholar]
  35. Bhatia M. B., Vinitsky A., Grubmeyer C. Kinetic mechanism of orotate phosphoribosyltransferase from Salmonella typhimurium. Biochemistry. 1990 Nov 20;29(46):10480–10487. doi: 10.1021/bi00498a009. [DOI] [PubMed] [Google Scholar]
  36. Bisercić M., Ochman H. Natural populations of Escherichia coli and Salmonella typhimurium harbor the same classes of insertion sequences. Genetics. 1993 Mar;133(3):449–454. doi: 10.1093/genetics/133.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Björk G. R., Wikström P. M., Byström A. S. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science. 1989 May 26;244(4907):986–989. doi: 10.1126/science.2471265. [DOI] [PubMed] [Google Scholar]
  38. Blanc-Potard A. B., Bossi L. Phenotypic suppression of DNA gyrase deficiencies by a deletion lowering the gene dosage of a major tRNA in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2216–2226. doi: 10.1128/jb.176.8.2216-2226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Blattner F. R., Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408–5417. doi: 10.1093/nar/21.23.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Blum P. H. Reduced leu operon expression in a miaA mutant of Salmonella typhimurium. J Bacteriol. 1988 Nov;170(11):5125–5133. doi: 10.1128/jb.170.11.5125-5133.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Blum P., Holzschu D., Kwan H. S., Riggs D., Artz S. Gene replacement and retrieval with recombinant M13mp bacteriophages. J Bacteriol. 1989 Jan;171(1):538–546. doi: 10.1128/jb.171.1.538-546.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Bobik T. A., Ailion M., Roth J. R. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol. 1992 Apr;174(7):2253–2266. doi: 10.1128/jb.174.7.2253-2266.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Borodovsky M., Koonin E. V., Rudd K. E. New genes in old sequence: a strategy for finding genes in the bacterial genome. Trends Biochem Sci. 1994 Aug;19(8):309–313. doi: 10.1016/0968-0004(94)90067-1. [DOI] [PubMed] [Google Scholar]
  44. Bower S. G., Hove-Jensen B., Switzer R. L. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium. J Bacteriol. 1988 Jul;170(7):3243–3248. doi: 10.1128/jb.170.7.3243-3248.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Brahmbhatt H. N., Wyk P., Quigley N. B., Reeves P. R. Complete physical map of the rfb gene cluster encoding biosynthetic enzymes for the O antigen of Salmonella typhimurium LT2. J Bacteriol. 1988 Jan;170(1):98–102. doi: 10.1128/jb.170.1.98-102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Bramley H. F., Kornberg H. L. Sequence homologies between proteins of bacterial phosphoenolpyruvate-dependent sugar phosphotransferase systems: identification of possible phosphate-carrying histidine residues. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4777–4780. doi: 10.1073/pnas.84.14.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Brazas R., Davie E., Farewell A., Rothfield L. I. Transcriptional organization of the rfaGBIJ locus of Salmonella typhimurium. J Bacteriol. 1991 Oct;173(19):6168–6173. doi: 10.1128/jb.173.19.6168-6173.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Brewer S., Tolley M., Trayer I. P., Barr G. C., Dorman C. J., Hannavy K., Higgins C. F., Evans J. S., Levine B. A., Wormald M. R. Structure and function of X-Pro dipeptide repeats in the TonB proteins of Salmonella typhimurium and Escherichia coli. J Mol Biol. 1990 Dec 20;216(4):883–895. doi: 10.1016/S0022-2836(99)80008-4. [DOI] [PubMed] [Google Scholar]
  49. Brok R. G., Brinkman E., van Boxtel R., Bekkers A. C., Verheij H. M., Tommassen J. Molecular characterization of enterobacterial pldA genes encoding outer membrane phospholipase A. J Bacteriol. 1994 Feb;176(3):861–870. doi: 10.1128/jb.176.3.861-870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Brown D. J., Olsen J. E., Bisgaard M. Salmonella enterica: infection, cross infection and persistence within the environment of a broiler parent stock unit in Denmark. Zentralbl Bakteriol. 1992 Jun;277(1):129–138. doi: 10.1016/s0934-8840(11)80881-9. [DOI] [PubMed] [Google Scholar]
  51. Brzović P. S., Kayastha A. M., Miles E. W., Dunn M. F. Substitution of glutamic acid 109 by aspartic acid alters the substrate specificity and catalytic activity of the beta-subunit in the tryptophan synthase bienzyme complex from Salmonella typhimurium. Biochemistry. 1992 Feb 4;31(4):1180–1190. doi: 10.1021/bi00119a030. [DOI] [PubMed] [Google Scholar]
  52. Buchmeier N. A., Lipps C. J., So M. Y., Heffron F. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol. 1993 Mar;7(6):933–936. doi: 10.1111/j.1365-2958.1993.tb01184.x. [DOI] [PubMed] [Google Scholar]
  53. Buckenmeyer G. K., Hermodson M. A. The amino acid sequence of D-ribose-binding protein from Salmonella typhimurium ST1. J Biol Chem. 1983 Nov 10;258(21):12957–12957. [PubMed] [Google Scholar]
  54. Burgin A. B., Parodos K., Lane D. J., Pace N. R. The excision of intervening sequences from Salmonella 23S ribosomal RNA. Cell. 1990 Feb 9;60(3):405–414. doi: 10.1016/0092-8674(90)90592-3. [DOI] [PubMed] [Google Scholar]
  55. Burns D. M., Beacham I. R. Identification and sequence analysis of a silent gene (ushA0) in Salmonella typhimurium. J Mol Biol. 1986 Nov 20;192(2):163–175. doi: 10.1016/0022-2836(86)90358-x. [DOI] [PubMed] [Google Scholar]
  56. Byerly K. A., Urbanowski M. L., Stauffer G. V. The metR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol. 1991 Jun;173(11):3547–3553. doi: 10.1128/jb.173.11.3547-3553.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Byrne C. R., Monroe R. S., Ward K. A., Kredich N. M. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol. 1988 Jul;170(7):3150–3157. doi: 10.1128/jb.170.7.3150-3157.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Bäumler A. J., Kusters J. G., Stojiljkovic I., Heffron F. Salmonella typhimurium loci involved in survival within macrophages. Infect Immun. 1994 May;62(5):1623–1630. doi: 10.1128/iai.62.5.1623-1630.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Caldwell A. L., Gulig P. A. The Salmonella typhimurium virulence plasmid encodes a positive regulator of a plasmid-encoded virulence gene. J Bacteriol. 1991 Nov;173(22):7176–7185. doi: 10.1128/jb.173.22.7176-7185.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Calero S., Garriga X., Barbé J. One-step cloning system for isolation of bacterial lexA-like genes. J Bacteriol. 1991 Nov;173(22):7345–7350. doi: 10.1128/jb.173.22.7345-7350.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Caligiuri M. G., Bauerle R. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem. 1991 May 5;266(13):8328–8335. [PubMed] [Google Scholar]
  62. Carlomagno M. S., Chiariotti L., Alifano P., Nappo A. G., Bruni C. B. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol. 1988 Oct 5;203(3):585–606. doi: 10.1016/0022-2836(88)90194-5. [DOI] [PubMed] [Google Scholar]
  63. Carsiotis M., Stocker B. A., Holder I. A. Salmonella typhimurium virulence in a burned-mouse model. Infect Immun. 1989 Sep;57(9):2842–2846. doi: 10.1128/iai.57.9.2842-2846.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Carstenius P., Flock J. I., Lindberg A. Nucleotide sequence of rfaI and rfaJ genes encoding lipopolysaccharide glycosyl transferases from Salmonella typhimurium. Nucleic Acids Res. 1990 Oct 25;18(20):6128–6128. doi: 10.1093/nar/18.20.6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Cerin H., Hackett J. Molecular cloning and analysis of the incompatibility and partition functions of the virulence plasmid of Salmonella typhimurium. Microb Pathog. 1989 Aug;7(2):85–99. doi: 10.1016/0882-4010(89)90028-4. [DOI] [PubMed] [Google Scholar]
  66. Cerin H., Hackett J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid. 1993 Jul;30(1):30–38. doi: 10.1006/plas.1993.1031. [DOI] [PubMed] [Google Scholar]
  67. Cerretti D. P., Mattheakis L. C., Kearney K. R., Vu L., Nomura M. Translational regulation of the spc operon in Escherichia coli. Identification and structural analysis of the target site for S8 repressor protein. J Mol Biol. 1988 Nov 20;204(2):309–329. doi: 10.1016/0022-2836(88)90578-5. [DOI] [PubMed] [Google Scholar]
  68. Chan C. L., Landick R. The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem. 1989 Dec 5;264(34):20796–20804. [PubMed] [Google Scholar]
  69. Charlier D., Roovers M., Gigot D., Huysveld N., Piérard A., Glansdorff N. Integration host factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2. Mol Gen Genet. 1993 Feb;237(1-2):273–286. doi: 10.1007/BF00282809. [DOI] [PubMed] [Google Scholar]
  70. Chary P., Prasad R., Chopra A. K., Peterson J. W. Location of the enterotoxin gene from Salmonella typhimurium and characterization of the gene products. FEMS Microbiol Lett. 1993 Jul 15;111(1):87–92. doi: 10.1111/j.1574-6968.1993.tb06366.x. [DOI] [PubMed] [Google Scholar]
  71. Chatfield S. N., Dorman C. J., Hayward C., Dougan G. Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. Infect Immun. 1991 Jan;59(1):449–452. doi: 10.1128/iai.59.1.449-452.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Chatfield S. N., Strahan K., Pickard D., Charles I. G., Hormaeche C. E., Dougan G. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog. 1992 Feb;12(2):145–151. doi: 10.1016/0882-4010(92)90117-7. [DOI] [PubMed] [Google Scholar]
  73. Chen D., Bowater R., Dorman C. J., Lilley D. M. Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8784–8788. doi: 10.1073/pnas.89.18.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Chen J. M., Lee G., Murphy R. B., Brandt-Rauf P. W., Pincus M. R. Comparisons between the three-dimensional structures of the chemotactic protein CheY and the normal Gly 12-p21 protein. Int J Pept Protein Res. 1990 Jul;36(1):1–6. doi: 10.1111/j.1399-3011.1990.tb00077.x. [DOI] [PubMed] [Google Scholar]
  75. Chen P., Andersson D. I., Roth J. R. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5474–5482. doi: 10.1128/jb.176.17.5474-5482.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Cheng W., Roth J. R. Evidence for two NAD kinases in Salmonella typhimurium. J Bacteriol. 1994 Jul;176(14):4260–4268. doi: 10.1128/jb.176.14.4260-4268.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Chiariotti L., Alifano P., Carlomagno M. S., Bruni C. B. Nucleotide sequence of the Escherichia coli hisD gene and of the Escherichia coli and Salmonella typhimurium hisIE region. Mol Gen Genet. 1986 Jun;203(3):382–388. doi: 10.1007/BF00422061. [DOI] [PubMed] [Google Scholar]
  78. Chiariotti L., Nappo A. G., Carlomagno M. S., Bruni C. B. Gene structure in the histidine operon of Escherichia coli. Identification and nucleotide sequence of the hisB gene. Mol Gen Genet. 1986 Jan;202(1):42–47. doi: 10.1007/BF00330514. [DOI] [PubMed] [Google Scholar]
  79. Chin A. M., Feldheim D. A., Saier M. H., Jr Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol. 1989 May;171(5):2424–2434. doi: 10.1128/jb.171.5.2424-2434.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Cho H., Cronan J. E., Jr "Protease I" of Escherichia coli functions as a thioesterase in vivo. J Bacteriol. 1994 Mar;176(6):1793–1795. doi: 10.1128/jb.176.6.1793-1795.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Chopra A. K., Peterson J. W., Houston C. W., Pericas R., Prasad R. Enterotoxin-associated DNA sequence homology between Salmonella species and Escherichia coli. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):133–138. doi: 10.1016/0378-1097(91)90540-q. [DOI] [PubMed] [Google Scholar]
  82. Chopra A. K., Peterson J. W., Prasad R. Cloning and sequence analysis of hydrogenase regulatory genes (hydHG) from Salmonella typhimurium. Biochim Biophys Acta. 1991 Dec 2;1129(1):115–118. doi: 10.1016/0167-4781(91)90224-a. [DOI] [PubMed] [Google Scholar]
  83. Chopra A. K., Peterson J. W., Prasad R. Nucleotide sequence analysis of purH and purD genes from Salmonella typhimurium. Biochim Biophys Acta. 1991 Nov 11;1090(3):351–354. doi: 10.1016/0167-4781(91)90202-w. [DOI] [PubMed] [Google Scholar]
  84. Christman M. F., Storz G., Ames B. N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A. 1989 May;86(10):3484–3488. doi: 10.1073/pnas.86.10.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ciampi M. S., Alifano P., Nappo A. G., Bruni C. B., Carlomagno M. S. Features of the rho-dependent transcription termination polar element within the hisG cistron of Salmonella typhimurium. J Bacteriol. 1989 Aug;171(8):4472–4478. doi: 10.1128/jb.171.8.4472-4478.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Clarke P., Lee J. H., Burke K., Wilcox G. Mutations in the araC gene of Salmonella typhimurium LT2 which affect both activator and auto-regulatory functions of the AraC protein. Gene. 1992 Aug 1;117(1):31–37. doi: 10.1016/0378-1119(92)90486-9. [DOI] [PubMed] [Google Scholar]
  87. Clarke P., Lin H. C., Wilcox G. The nucleotide sequence of the araC regulatory gene in Salmonella typhimurium LT2. Gene. 1982 May;18(2):157–163. doi: 10.1016/0378-1119(82)90113-5. [DOI] [PubMed] [Google Scholar]
  88. Claverie J. M. Detecting frame shifts by amino acid sequence comparison. J Mol Biol. 1993 Dec 20;234(4):1140–1157. doi: 10.1006/jmbi.1993.1666. [DOI] [PubMed] [Google Scholar]
  89. Collazo C. M., Zierler M. K., Galán J. E. Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol Microbiol. 1995 Jan;15(1):25–38. doi: 10.1111/j.1365-2958.1995.tb02218.x. [DOI] [PubMed] [Google Scholar]
  90. Collin-Osdoby P., Miller C. G. Mutations affecting a regulated, membrane-associated esterase in Salmonella typhimurium LT2. Mol Gen Genet. 1994 Jun 15;243(6):674–680. doi: 10.1007/BF00279577. [DOI] [PubMed] [Google Scholar]
  91. Collins L. V., Attridge S., Hackett J. Mutations at rfc or pmi attenuate Salmonella typhimurium virulence for mice. Infect Immun. 1991 Mar;59(3):1079–1085. doi: 10.1128/iai.59.3.1079-1085.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Collins L. V., Hackett J. Molecular cloning, characterization, and nucleotide sequence of the rfc gene, which encodes an O-antigen polymerase of Salmonella typhimurium. J Bacteriol. 1991 Apr;173(8):2521–2529. doi: 10.1128/jb.173.8.2521-2529.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Collins L. V., Hackett J. Sequence of the phosphomannose isomerase-encoding gene of Salmonella typhimurium. Gene. 1991 Jul 15;103(1):135–136. doi: 10.1016/0378-1119(91)90406-2. [DOI] [PubMed] [Google Scholar]
  94. Conlin C. A., Håkensson K., Liljas A., Miller C. G. Cloning and nucleotide sequence of the cyclic AMP receptor protein-regulated Salmonella typhimurium pepE gene and crystallization of its product, an alpha-aspartyl dipeptidase. J Bacteriol. 1994 Jan;176(1):166–172. doi: 10.1128/jb.176.1.166-172.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Conlin C. A., Miller C. G. Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium. J Bacteriol. 1992 Mar;174(5):1631–1640. doi: 10.1128/jb.174.5.1631-1640.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Conlin C. A., Trun N. J., Silhavy T. J., Miller C. G. Escherichia coli prlC encodes an endopeptidase and is homologous to the Salmonella typhimurium opdA gene. J Bacteriol. 1992 Sep;174(18):5881–5887. doi: 10.1128/jb.174.18.5881-5887.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Conlin C. A., Vimr E. R., Miller C. G. Oligopeptidase A is required for normal phage P22 development. J Bacteriol. 1992 Sep;174(18):5869–5880. doi: 10.1128/jb.174.18.5869-5880.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Costa C. S., Antón D. N. Round-cell mutants of Salmonella typhimurium produced by transposition mutagenesis: lethality of rodA and mre mutations. Mol Gen Genet. 1993 Jan;236(2-3):387–394. doi: 10.1007/BF00277138. [DOI] [PubMed] [Google Scholar]
  99. Cottam A. N., Ayling P. D. Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. Mol Gen Genet. 1989 Jan;215(2):358–363. doi: 10.1007/BF00339743. [DOI] [PubMed] [Google Scholar]
  100. Cowan J. M., Urbanowski M. L., Talmi M., Stauffer G. V. Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol. 1993 Sep;175(18):5862–5866. doi: 10.1128/jb.175.18.5862-5866.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Coynault C., Robbe-Saule V., Popoff M. Y., Norel F. Growth phase and SpvR regulation of transcription of Salmonella typhimurium spvABC virulence genes. Microb Pathog. 1992 Aug;13(2):133–143. doi: 10.1016/0882-4010(92)90073-w. [DOI] [PubMed] [Google Scholar]
  102. Craven M. G., Granston A. E., Schauer A. T., Zheng C., Gray T. A., Friedman D. I. Escherichia coli-Salmonella typhimurium hybrid nusA genes: identification of a short motif required for action of the lambda N transcription antitermination protein. J Bacteriol. 1994 Mar;176(5):1394–1404. doi: 10.1128/jb.176.5.1394-1404.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Crawford I. P., Nichols B. P., Yanofsky C. Nucleotide sequence of the trpB gene in Escherichia coli and Salmonella typhimurium. J Mol Biol. 1980 Oct 5;142(4):489–502. doi: 10.1016/0022-2836(80)90259-4. [DOI] [PubMed] [Google Scholar]
  104. Crennell S. J., Garman E. F., Laver W. G., Vimr E. R., Taylor G. L. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9852–9856. doi: 10.1073/pnas.90.21.9852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Csonka L. N., Ikeda T. P., Fletcher S. A., Kustu S. The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J Bacteriol. 1994 Oct;176(20):6324–6333. doi: 10.1128/jb.176.20.6324-6333.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Dahl M. K., Boos W., Manson M. D. Evolution of chemotactic-signal transducers in enteric bacteria. J Bacteriol. 1989 May;171(5):2361–2371. doi: 10.1128/jb.171.5.2361-2371.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Dahl M. K., Francoz E., Saurin W., Boos W., Manson M. D., Hofnung M. Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K12: a potential new regulatory site in the interoperonic region. Mol Gen Genet. 1989 Aug;218(2):199–207. doi: 10.1007/BF00331269. [DOI] [PubMed] [Google Scholar]
  108. Dartois V., De Backer O., Colson C. Sequence of the Salmonella typhimurium StyLT1 restriction-modification genes: homologies with EcoP1 and EcoP15 type-III R-M systems and presence of helicase domains. Gene. 1993 May 15;127(1):105–110. doi: 10.1016/0378-1119(93)90623-b. [DOI] [PubMed] [Google Scholar]
  109. Daub E., Zawadzke L. E., Botstein D., Walsh C. T. Isolation, cloning, and sequencing of the Salmonella typhimurium ddlA gene with purification and characterization of its product, D-alanine:D-alanine ligase (ADP forming). Biochemistry. 1988 May 17;27(10):3701–3708. doi: 10.1021/bi00410a027. [DOI] [PubMed] [Google Scholar]
  110. Davidson J. P., Wilson D. J. Evidence for isoleucine as a positive effector of the ilvBN operon in Salmonella typhimurium. Biochem Biophys Res Commun. 1991 Aug 15;178(3):934–939. doi: 10.1016/0006-291x(91)90981-c. [DOI] [PubMed] [Google Scholar]
  111. De Backer O., Colson C. Identification of the recognition sequence for the M.StyLTI methyltransferase of Salmonella typhimurium LT7: an asymmetric site typical of type-III enzymes. Gene. 1991 Jan 2;97(1):103–107. doi: 10.1016/0378-1119(91)90015-4. [DOI] [PubMed] [Google Scholar]
  112. De Backer O., Colson C. Transfer of the genes for the StyLTI restriction-modification system of Salmonella typhimurium to strains lacking modification ability results in death of the recipient cells and degradation of their DNA. J Bacteriol. 1991 Feb;173(3):1328–1330. doi: 10.1128/jb.173.3.1328-1330.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. De Backer O., Colson C. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system StyLTI of Salmonella typhimurium. J Bacteriol. 1991 Feb;173(3):1321–1327. doi: 10.1128/jb.173.3.1321-1327.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Denk D., Böck A. L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol. 1987 Mar;133(3):515–525. doi: 10.1099/00221287-133-3-515. [DOI] [PubMed] [Google Scholar]
  116. Desiraju V., Shanabruch W. G., Lu A. L. Nucleotide sequence of the Salmonella typhimurium mutB gene, the homolog of Escherichia coli mutY. J Bacteriol. 1993 Jan;175(2):541–543. doi: 10.1128/jb.175.2.541-543.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Doll L., Frankel G. fliU and fliV: two flagellar genes essential for biosynthesis of Salmonella and Escherichia coli flagella. J Gen Microbiol. 1993 Oct;139(10):2415–2422. doi: 10.1099/00221287-139-10-2415. [DOI] [PubMed] [Google Scholar]
  118. Dombrosky P. M., Schmid M. B., Young K. D. Sequence divergence of the murB and rrfB genes from Escherichia coli and Salmonella typhimurium. Arch Microbiol. 1994;161(6):501–507. doi: 10.1007/BF00307771. [DOI] [PubMed] [Google Scholar]
  119. Dorman C. J., Chatfield S., Higgins C. F., Hayward C., Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun. 1989 Jul;57(7):2136–2140. doi: 10.1128/iai.57.7.2136-2140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Downs D. M. Evidence for a new, oxygen-regulated biosynthetic pathway for the pyrimidine moiety of thiamine in Salmonella typhimurium. J Bacteriol. 1992 Mar;174(5):1515–1521. doi: 10.1128/jb.174.5.1515-1521.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Downs D. M., Petersen L. apbA, a new genetic locus involved in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol. 1994 Aug;176(16):4858–4864. doi: 10.1128/jb.176.16.4858-4864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Downs D. M., Roth J. R. Synthesis of thiamine in Salmonella typhimurium independent of the purF function. J Bacteriol. 1991 Oct;173(20):6597–6604. doi: 10.1128/jb.173.20.6597-6604.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Dreyfus G., Williams A. W., Kawagishi I., Macnab R. M. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J Bacteriol. 1993 May;175(10):3131–3138. doi: 10.1128/jb.175.10.3131-3138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Driks A., DeRosier D. J. Additional structures associated with bacterial flagellar basal body. J Mol Biol. 1990 Feb 20;211(4):669–672. doi: 10.1016/0022-2836(90)90063-R. [DOI] [PubMed] [Google Scholar]
  125. Edwards C. J., Innes D. J., Burns D. M., Beacham I. R. UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli, indicate recent and early silencing events, respectively. FEMS Microbiol Lett. 1993 Dec 15;114(3):293–298. doi: 10.1111/j.1574-6968.1993.tb06588.x. [DOI] [PubMed] [Google Scholar]
  126. Eichelberg K., Ginocchio C. C., Galán J. E. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J Bacteriol. 1994 Aug;176(15):4501–4510. doi: 10.1128/jb.176.15.4501-4510.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Eisenbach M., Wolf A., Welch M., Caplan S. R., Lapidus I. R., Macnab R. M., Aloni H., Asher O. Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J Mol Biol. 1990 Feb 5;211(3):551–563. doi: 10.1016/0022-2836(90)90265-N. [DOI] [PubMed] [Google Scholar]
  128. Ekena K., Maloy S. Regulation of proline utilization in Salmonella typhimurium: how do cells avoid a futile cycle? Mol Gen Genet. 1990 Feb;220(3):492–494. doi: 10.1007/BF00391761. [DOI] [PubMed] [Google Scholar]
  129. Elliott T. A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol. 1992 Jan;174(1):245–253. doi: 10.1128/jb.174.1.245-253.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Elliott T., Avissar Y. J., Rhie G. E., Beale S. I. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol. 1990 Dec;172(12):7071–7084. doi: 10.1128/jb.172.12.7071-7084.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Elliott T. Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol. 1989 Jul;171(7):3948–3960. doi: 10.1128/jb.171.7.3948-3960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Elliott T., Roth J. R. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis. Mol Gen Genet. 1989 Apr;216(2-3):303–314. doi: 10.1007/BF00334369. [DOI] [PubMed] [Google Scholar]
  133. Elliott T. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. J Bacteriol. 1993 Jan;175(2):325–331. doi: 10.1128/jb.175.2.325-331.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Elliott T., Wang X. Salmonella typhimurium prfA mutants defective in release factor 1. J Bacteriol. 1991 Jul;173(13):4144–4154. doi: 10.1128/jb.173.13.4144-4154.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Erickson B. D., Burton Z. F., Watanabe K. K., Burgess R. R. Nucleotide sequence of the rpsU-dnaG-rpoD operon from Salmonella typhimurium and a comparison of this sequence with the homologous operon of Escherichia coli. Gene. 1985;40(1):67–78. doi: 10.1016/0378-1119(85)90025-3. [DOI] [PubMed] [Google Scholar]
  136. Escalante-Semerena J. C., Johnson M. G., Roth J. R. The CobII and CobIII regions of the cobalamin (vitamin B12) biosynthetic operon of Salmonella typhimurium. J Bacteriol. 1992 Jan;174(1):24–29. doi: 10.1128/jb.174.1.24-29.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Escalante-Semerena J. C., Suh S. J., Roth J. R. cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J Bacteriol. 1990 Jan;172(1):273–280. doi: 10.1128/jb.172.1.273-280.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Falconi M., McGovern V., Gualerzi C., Hillyard D., Higgins N. P. Mutations altering chromosomal protein H-NS induce mini-Mu transposition. New Biol. 1991 Jun;3(6):615–625. [PubMed] [Google Scholar]
  139. Fandl J. P., Thorner L. K., Artz S. W. Mutations that affect transcription and cyclic AMP-CRP regulation of the adenylate cyclase gene (cya) of Salmonella typhimurium. Genetics. 1990 Aug;125(4):719–727. doi: 10.1093/genetics/125.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11978–11982. doi: 10.1073/pnas.89.24.11978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Fasciano A., Hallenbeck P. C. Mutations in trans that affect formate dehydrogenase (fdhF) gene expression in Salmonella typhimurium. J Bacteriol. 1991 Sep;173(18):5893–5900. doi: 10.1128/jb.173.18.5893-5900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Fasciano A., Hallenbeck P. C. The role of ntrA in the anaerobic metabolism of Salmonella typhimurium. FEMS Microbiol Lett. 1992 Jan 1;69(2):101–104. doi: 10.1016/0378-1097(92)90611-q. [DOI] [PubMed] [Google Scholar]
  144. Faust L. P., Babior B. M. Overexpression, purification, and some properties of the AdoCbl-dependent ethanolamine ammonia-lyase from Salmonella typhimurium. Arch Biochem Biophys. 1992 Apr;294(1):50–54. doi: 10.1016/0003-9861(92)90135-j. [DOI] [PubMed] [Google Scholar]
  145. Faust L. R., Connor J. A., Roof D. M., Hoch J. A., Babior B. M. Cloning, sequencing, and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium. J Biol Chem. 1990 Jul 25;265(21):12462–12466. [PubMed] [Google Scholar]
  146. Feild M. J., Nguyen D. C., Armstrong F. B. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase. Biochemistry. 1989 Jun 13;28(12):5306–5310. doi: 10.1021/bi00438a058. [DOI] [PubMed] [Google Scholar]
  147. Feldheim D. A., Chin A. M., Nierva C. T., Feucht B. U., Cao Y. W., Xu Y. F., Sutrina S. L., Saier M. H., Jr Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. J Bacteriol. 1990 Sep;172(9):5459–5469. doi: 10.1128/jb.172.9.5459-5469.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Feng J. A., Johnson R. C., Dickerson R. E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science. 1994 Jan 21;263(5145):348–355. doi: 10.1126/science.8278807. [DOI] [PubMed] [Google Scholar]
  149. Fields P. I., Groisman E. A., Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science. 1989 Feb 24;243(4894 Pt 1):1059–1062. doi: 10.1126/science.2646710. [DOI] [PubMed] [Google Scholar]
  150. Figueroa N., Wills N., Bossi L. Common sequence determinants of the response of a prokaryotic promoter to DNA bending and supercoiling. EMBO J. 1991 Apr;10(4):941–949. doi: 10.1002/j.1460-2075.1991.tb08028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Finkel S. E., Johnson R. C. The Fis protein: it's not just for DNA inversion anymore. Mol Microbiol. 1992 Nov;6(22):3257–3265. doi: 10.1111/j.1365-2958.1992.tb02193.x. [DOI] [PubMed] [Google Scholar]
  152. Fira D., Vasiljević B., Topisirovic L. Altered translational fidelity of a Salmonella typhimurium LT2 mutant resistant to the aminoglycoside antibiotic neamine. J Gen Microbiol. 1990 Feb;136(2):249–253. doi: 10.1099/00221287-136-2-249. [DOI] [PubMed] [Google Scholar]
  153. Fong C. L., Heinzinger N. K., Tongklan S., Barrett E. L. Cloning of the phs genetic locus from Salmonella typhimurium and a role for a phs product in its own induction. J Bacteriol. 1993 Oct;175(19):6368–6371. doi: 10.1128/jb.175.19.6368-6371.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Foster J. W., Bearson B. Acid-sensitive mutants of Salmonella typhimurium identified through a dinitrophenol lethal screening strategy. J Bacteriol. 1994 May;176(9):2596–2602. doi: 10.1128/jb.176.9.2596-2602.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Foster J. W., Hall H. K. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):771–778. doi: 10.1128/jb.172.2.771-778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Foster J. W., Hall H. K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol. 1992 Jul;174(13):4317–4323. doi: 10.1128/jb.174.13.4317-4323.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Foster J. W., Hall H. K. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol. 1991 Aug;173(16):5129–5135. doi: 10.1128/jb.173.16.5129-5135.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Foster J. W., Park Y. K., Bang I. S., Karem K., Betts H., Hall H. K., Shaw E. Regulatory circuits involved with pH-regulated gene expression in Salmonella typhimurium. Microbiology. 1994 Feb;140(Pt 2):341–352. doi: 10.1099/13500872-140-2-341. [DOI] [PubMed] [Google Scholar]
  159. Foster J. W., Park Y. K., Penfound T., Fenger T., Spector M. P. Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J Bacteriol. 1990 Aug;172(8):4187–4196. doi: 10.1128/jb.172.8.4187-4196.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Foster J. W. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. doi: 10.1128/jb.173.21.6896-6902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Foster J. W. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol. 1993 Apr;175(7):1981–1987. doi: 10.1128/jb.175.7.1981-1987.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Francis C. L., Ryan T. A., Jones B. D., Smith S. J., Falkow S. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature. 1993 Aug 12;364(6438):639–642. doi: 10.1038/364639a0. [DOI] [PubMed] [Google Scholar]
  163. Francis N. R., Irikura V. M., Yamaguchi S., DeRosier D. J., Macnab R. M. Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6304–6308. doi: 10.1073/pnas.89.14.6304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Francoz E., Molla A., Dassa E., Saurin W., Hofnung M. The maltoporin of Salmonella typhimurium: sequence and folding model. Res Microbiol. 1990 Nov-Dec;141(9):1039–1059. doi: 10.1016/0923-2508(90)90078-5. [DOI] [PubMed] [Google Scholar]
  165. Francoz E., Schneider E., Dassa E. The sequence of the malG gene from Salmonella typhimurium and its functional implications. Res Microbiol. 1990 Jul-Aug;141(6):633–644. doi: 10.1016/0923-2508(90)90058-x. [DOI] [PubMed] [Google Scholar]
  166. Freudl R., Braun G., Honoré N., Cole S. T. Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene. 1987;52(1):31–40. doi: 10.1016/0378-1119(87)90392-1. [DOI] [PubMed] [Google Scholar]
  167. Freudl R., Cole S. T. Cloning and molecular characterization of the ompA gene from Salmonella typhimurium. Eur J Biochem. 1983 Aug 15;134(3):497–502. doi: 10.1111/j.1432-1033.1983.tb07594.x. [DOI] [PubMed] [Google Scholar]
  168. Frick M. M., Neuhard J., Kelln R. A. Cloning, nucleotide sequence and regulation of the Salmonella typhimurium pyrD gene encoding dihydroorotate dehydrogenase. Eur J Biochem. 1990 Dec 12;194(2):573–578. doi: 10.1111/j.1432-1033.1990.tb15654.x. [DOI] [PubMed] [Google Scholar]
  169. Friedberg D., Rosenthal E. R., Jones J. W., Calvo J. M. Characterization of the 3' end of the leucine operon of Salmonella typhimurium. Mol Gen Genet. 1985;199(3):486–494. doi: 10.1007/BF00330763. [DOI] [PubMed] [Google Scholar]
  170. Friedrich M. J., Kinsey N. E., Vila J., Kadner R. J. Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol Microbiol. 1993 May;8(3):543–558. doi: 10.1111/j.1365-2958.1993.tb01599.x. [DOI] [PubMed] [Google Scholar]
  171. Fuller-Pace F. V., Murray N. E. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9368–9372. doi: 10.1073/pnas.83.24.9368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Galakatos N. G., Daub E., Botstein D., Walsh C. T. Biosynthetic alr alanine racemase from Salmonella typhimurium: DNA and protein sequence determination. Biochemistry. 1986 Jun 3;25(11):3255–3260. doi: 10.1021/bi00359a026. [DOI] [PubMed] [Google Scholar]
  173. Galinier A., Nègre D., Cortay J. C., Marcandier S., Maloy S. R., Cozzone A. J. Sequence analysis of the iclR gene encoding the repressor of the acetate operon in Salmonella typhimurium. Nucleic Acids Res. 1990 Jun 25;18(12):3656–3656. doi: 10.1093/nar/18.12.3656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Gallagher M. P., Pearce S. R., Higgins C. F. Identification and localization of the membrane-associated, ATP-binding subunit of the oligopeptide permease of Salmonella typhimurium. Eur J Biochem. 1989 Mar 1;180(1):133–141. doi: 10.1111/j.1432-1033.1989.tb14623.x. [DOI] [PubMed] [Google Scholar]
  175. Galán J. E., Curtiss R., 3rd Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6383–6387. doi: 10.1073/pnas.86.16.6383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Galán J. E., Curtiss R., 3rd Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect Immun. 1991 Sep;59(9):2901–2908. doi: 10.1128/iai.59.9.2901-2908.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Galán J. E., Curtiss R., 3rd Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun. 1990 Jun;58(6):1879–1885. doi: 10.1128/iai.58.6.1879-1885.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Galán J. E., Curtiss R., 3rd Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb Pathog. 1989 Jun;6(6):433–443. doi: 10.1016/0882-4010(89)90085-5. [DOI] [PubMed] [Google Scholar]
  179. Galán J. E., Ginocchio C., Costeas P. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol. 1992 Jul;174(13):4338–4349. doi: 10.1128/jb.174.13.4338-4349.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Galán J. E., Nakayama K., Curtiss R., 3rd Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene. 1990 Sep 28;94(1):29–35. doi: 10.1016/0378-1119(90)90464-3. [DOI] [PubMed] [Google Scholar]
  181. Gan K., Gupta S. D., Sankaran K., Schmid M. B., Wu H. C. Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification. J Biol Chem. 1993 Aug 5;268(22):16544–16550. [PubMed] [Google Scholar]
  182. Gann A. A., Campbell A. J., Collins J. F., Coulson A. F., Murray N. E. Reassortment of DNA recognition domains and the evolution of new specificities. Mol Microbiol. 1987 Jul;1(1):13–22. doi: 10.1111/j.1365-2958.1987.tb00521.x. [DOI] [PubMed] [Google Scholar]
  183. Garcia-del Portillo F., Foster J. W., Finlay B. B. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun. 1993 Oct;61(10):4489–4492. doi: 10.1128/iai.61.10.4489-4492.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol. 1992 Nov;6(22):3289–3297. doi: 10.1111/j.1365-2958.1992.tb02197.x. [DOI] [PubMed] [Google Scholar]
  185. Garrett A. R., Johnson L. A., Beacham I. R. Isolation, molecular characterization and expression of the ushB gene of Salmonella typhimurium which encodes a membrane-bound UDP-sugar hydrolase. Mol Microbiol. 1989 Feb;3(2):177–186. doi: 10.1111/j.1365-2958.1989.tb01806.x. [DOI] [PubMed] [Google Scholar]
  186. Garriga X., Calero S., Barbé J. Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. Mol Gen Genet. 1992 Dec;236(1):125–134. doi: 10.1007/BF00279651. [DOI] [PubMed] [Google Scholar]
  187. Geerse R. H., Izzo F., Postma P. W. The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet. 1989 Apr;216(2-3):517–525. doi: 10.1007/BF00334399. [DOI] [PubMed] [Google Scholar]
  188. Gemmill R. M., Wessler S. R., Keller E. B., Calvo J. M. leu operon of Salmonella typhimurium is controlled by an attenuation mechanism. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4941–4945. doi: 10.1073/pnas.76.10.4941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Gibert I., Barbé J., Casadesús J. Distribution of insertion sequence IS200 in Salmonella and Shigella. J Gen Microbiol. 1990 Dec;136(12):2555–2560. doi: 10.1099/00221287-136-12-2555. [DOI] [PubMed] [Google Scholar]
  190. Gibert I., Casadesús J. sulA-independent division inhibition in his-constitutive strains of Salmonella typhimurium. FEMS Microbiol Lett. 1990 Jun 1;57(3):205–210. doi: 10.1016/0378-1097(90)90066-y. [DOI] [PubMed] [Google Scholar]
  191. Gibson B. W., Melaugh W., Phillips N. J., Apicella M. A., Campagnari A. A., Griffiss J. M. Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol. 1993 May;175(9):2702–2712. doi: 10.1128/jb.175.9.2702-2712.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Gibson M. M., Bagga D. A., Miller C. G., Maguire M. E. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol. 1991 Nov;5(11):2753–2762. doi: 10.1111/j.1365-2958.1991.tb01984.x. [DOI] [PubMed] [Google Scholar]
  193. Gillen K. L., Hughes K. T. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol. 1991 Oct;173(20):6453–6459. doi: 10.1128/jb.173.20.6453-6459.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Gillen K. L., Hughes K. T. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J Bacteriol. 1991 Apr;173(7):2301–2310. doi: 10.1128/jb.173.7.2301-2310.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Gillen K. L., Hughes K. T. Transcription from two promoters and autoregulation contribute to the control of expression of the Salmonella typhimurium flagellar regulatory gene flgM. J Bacteriol. 1993 Nov;175(21):7006–7015. doi: 10.1128/jb.175.21.7006-7015.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Ginocchio C. C., Olmsted S. B., Wells C. L., Galán J. E. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell. 1994 Feb 25;76(4):717–724. doi: 10.1016/0092-8674(94)90510-x. [DOI] [PubMed] [Google Scholar]
  197. Ginocchio C., Pace J., Galán J. E. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5976–5980. doi: 10.1073/pnas.89.13.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Glasgow A. C., Bruist M. F., Simon M. I. DNA-binding properties of the Hin recombinase. J Biol Chem. 1989 Jun 15;264(17):10072–10082. [PubMed] [Google Scholar]
  199. Goldman B. S., Roth J. R. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol. 1993 Mar;175(5):1457–1466. doi: 10.1128/jb.175.5.1457-1466.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Goldman R. C., Hunt F. Mechanism of O-antigen distribution in lipopolysaccharide. J Bacteriol. 1990 Sep;172(9):5352–5359. doi: 10.1128/jb.172.9.5352-5359.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Goldrick D., Yu G. Q., Jiang S. Q., Hong J. S. Nucleotide sequence and transcription start point of the phosphoglycerate transporter gene of Salmonella typhimurium. J Bacteriol. 1988 Aug;170(8):3421–3426. doi: 10.1128/jb.170.8.3421-3426.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Goncharoff P., Nichols B. P. Evolution of aminobenzoate synthases: nucleotide sequences of Salmonella typhimurium and Klebsiella aerogenes pabB. Mol Biol Evol. 1988 Sep;5(5):531–548. doi: 10.1093/oxfordjournals.molbev.a040512. [DOI] [PubMed] [Google Scholar]
  203. Grabau C., Roth J. R. A Salmonella typhimurium cobalamin-deficient mutant blocked in 1-amino-2-propanol synthesis. J Bacteriol. 1992 Apr;174(7):2138–2144. doi: 10.1128/jb.174.7.2138-2144.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Graeme-Cook K. A., May G., Bremer E., Higgins C. F. Osmotic regulation of porin expression: a role for DNA supercoiling. Mol Microbiol. 1989 Sep;3(9):1287–1294. doi: 10.1111/j.1365-2958.1989.tb00279.x. [DOI] [PubMed] [Google Scholar]
  205. Griffin H. G. Nucleotide sequence of the Salmonella serC gene. Nucleic Acids Res. 1990 Jul 25;18(14):4260–4260. doi: 10.1093/nar/18.14.4260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Grodberg J., Dunn J. J. Comparison of Escherichia coli K-12 outer membrane protease OmpT and Salmonella typhimurium E protein. J Bacteriol. 1989 May;171(5):2903–2905. doi: 10.1128/jb.171.5.2903-2905.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Groisman E. A., Chiao E., Lipps C. J., Heffron F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7077–7081. doi: 10.1073/pnas.86.18.7077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Groisman E. A., Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993 Oct;12(10):3779–3787. doi: 10.1002/j.1460-2075.1993.tb06056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Groisman E. A., Parra-Lopez C., Salcedo M., Lipps C. J., Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11939–11943. doi: 10.1073/pnas.89.24.11939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Groisman E. A., Saier M. H., Jr, Ochman H. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J. 1992 Apr;11(4):1309–1316. doi: 10.1002/j.1460-2075.1992.tb05175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Groisman E. A., Sturmoski M. A., Solomon F. R., Lin R., Ochman H. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1033–1037. doi: 10.1073/pnas.90.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Grubmeyer C. T., Gray W. R. A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry. 1986 Aug 26;25(17):4778–4784. doi: 10.1021/bi00365a009. [DOI] [PubMed] [Google Scholar]
  213. Grubmeyer C. T., Insinga S., Bhatia M., Moazami N. Salmonella typhimurium histidinol dehydrogenase: complete reaction stereochemistry and active site mapping. Biochemistry. 1989 Oct 3;28(20):8174–8180. doi: 10.1021/bi00446a032. [DOI] [PubMed] [Google Scholar]
  214. Grundy C. E., Ayling P. D. Fine structure mapping and complementation studies of the metD methionine transport system in Salmonella typhimurium. Genet Res. 1992 Aug;60(1):1–6. doi: 10.1017/s0016672300030603. [DOI] [PubMed] [Google Scholar]
  215. Gulig P. A., Chiodo V. A. Genetic and DNA sequence analysis of the Salmonella typhimurium virulence plasmid gene encoding the 28,000-molecular-weight protein. Infect Immun. 1990 Aug;58(8):2651–2658. doi: 10.1128/iai.58.8.2651-2658.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Gulig P. A., Curtiss R., 3rd Cloning and transposon insertion mutagenesis of virulence genes of the 100-kilobase plasmid of Salmonella typhimurium. Infect Immun. 1988 Dec;56(12):3262–3271. doi: 10.1128/iai.56.12.3262-3271.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Gulig P. A., Danbara H., Guiney D. G., Lax A. J., Norel F., Rhen M. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol. 1993 Mar;7(6):825–830. doi: 10.1111/j.1365-2958.1993.tb01172.x. [DOI] [PubMed] [Google Scholar]
  218. Gupta S. D., Gan K., Schmid M. B., Wu H. C. Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. J Biol Chem. 1993 Aug 5;268(22):16551–16556. [PubMed] [Google Scholar]
  219. Gustafsson C., Lindström P. H., Hagervall T. G., Esberg K. B., Björk G. R. The trmA promoter has regulatory features and sequence elements in common with the rRNA P1 promoter family of Escherichia coli. J Bacteriol. 1991 Mar;173(5):1757–1764. doi: 10.1128/jb.173.5.1757-1764.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Gutierrez J. A., Csonka L. N. Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant. J Bacteriol. 1995 Jan;177(2):390–400. doi: 10.1128/jb.177.2.390-400.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Haber L. T., Pang P. P., Sobell D. I., Mankovich J. A., Walker G. C. Nucleotide sequence of the Salmonella typhimurium mutS gene required for mismatch repair: homology of MutS and HexA of Streptococcus pneumoniae. J Bacteriol. 1988 Jan;170(1):197–202. doi: 10.1128/jb.170.1.197-202.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Haber L. T., Walker G. C. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 1991 Sep;10(9):2707–2715. doi: 10.1002/j.1460-2075.1991.tb07815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Hackett J., Wyk P., Reeves P., Mathan V. Mediation of serum resistance in Salmonella typhimurium by an 11-kilodalton polypeptide encoded by the cryptic plasmid. J Infect Dis. 1987 Mar;155(3):540–549. doi: 10.1093/infdis/155.3.540. [DOI] [PubMed] [Google Scholar]
  224. Haeffner-Gormley L., Chen Z. D., Zalkin H., Colman R. F. Evaluation of cysteine 283 and glutamic acid 284 in the coenzyme binding site of Salmonella typhimurium glutamate dehydrogenase by site-directed mutagenesis and reaction with the nucleotide analogue 2-[4-bromo-2,3-dioxobutyl)thio)-1,N6-ethenoadenosine 2',5'-bisphosphate. J Biol Chem. 1991 Mar 25;266(9):5388–5394. [PubMed] [Google Scholar]
  225. Hafner L. M., MacPhee D. G. Precise excision of Tn10 in Salmonella typhimurium: effects of mutations in the polA, dam, mutH and mutB genes and of methionine or ethionine in the plating medium. Mutat Res. 1991 Jul;263(3):179–184. doi: 10.1016/0165-7992(91)90059-d. [DOI] [PubMed] [Google Scholar]
  226. Hahn D. R., Myers R. S., Kent C. R., Maloy S. R. Regulation of proline utilization in Salmonella typhimurium: molecular characterization of the put operon, and DNA sequence of the put control region. Mol Gen Genet. 1988 Jul;213(1):125–133. doi: 10.1007/BF00333408. [DOI] [PubMed] [Google Scholar]
  227. Hakura A., Morimoto K., Sofuni T., Nohmi T. Cloning and characterization of the Salmonella typhimurium ada gene, which encodes O6-methylguanine-DNA methyltransferase. J Bacteriol. 1991 Jun;173(12):3663–3672. doi: 10.1128/jb.173.12.3663-3672.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Hall B. G. The role of single-mutant intermediates in the generation of trpAB double revertants during prolonged selection. J Bacteriol. 1993 Oct;175(20):6411–6414. doi: 10.1128/jb.175.20.6411-6414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Hallenbeck P. C., Clark M. A., Barrett E. L. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. J Bacteriol. 1989 Jun;171(6):3008–3015. doi: 10.1128/jb.171.6.3008-3015.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Hamilton S., Miller C. G. Cloning and nucleotide sequence of the Salmonella typhimurium dcp gene encoding dipeptidyl carboxypeptidase. J Bacteriol. 1992 Mar;174(5):1626–1630. doi: 10.1128/jb.174.5.1626-1630.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Han B. D., Nolan W. G., Hopkins H. P., Jones R. T., Ingraham J. L., Abdelal A. T. Effect of growth temperature on folding of carbamoylphosphate synthetases of Salmonella typhimurium and a cold-sensitive derivative. J Bacteriol. 1990 Sep;172(9):5089–5096. doi: 10.1128/jb.172.9.5089-5096.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Hannavy K., Barr G. C., Dorman C. J., Adamson J., Mazengera L. R., Gallagher M. P., Evans J. S., Levine B. A., Trayer I. P., Higgins C. F. TonB protein of Salmonella typhimurium. A model for signal transduction between membranes. J Mol Biol. 1990 Dec 20;216(4):897–910. doi: 10.1016/S0022-2836(99)80009-6. [DOI] [PubMed] [Google Scholar]
  233. Hansen F. G., Atlung T., Braun R. E., Wright A., Hughes P., Kohiyama M. Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1991 Aug;173(16):5194–5199. doi: 10.1128/jb.173.16.5194-5199.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Harlow K. W., Switzer R. L. Chemical modification of Salmonella typhimurium phosphoribosylpyrophosphate synthetase with 5'-(p-fluorosulfonylbenzoyl)adenosine. Identification of an active site histidine. J Biol Chem. 1990 Apr 5;265(10):5487–5493. [PubMed] [Google Scholar]
  235. Harlow K. W., Switzer R. L. Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: identification of two classes of cysteinyl residues. Arch Biochem Biophys. 1990 Feb 1;276(2):466–472. doi: 10.1016/0003-9861(90)90746-l. [DOI] [PubMed] [Google Scholar]
  236. He X. S., Rivkina M., Stocker B. A., Robinson W. S. Hypervariable region IV of Salmonella gene fliCd encodes a dominant surface epitope and a stabilizing factor for functional flagella. J Bacteriol. 1994 Apr;176(8):2406–2414. doi: 10.1128/jb.176.8.2406-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Heffernan E. J., Harwood J., Fierer J., Guiney D. The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol. 1992 Jan;174(1):84–91. doi: 10.1128/jb.174.1.84-91.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Heffernan E. J., Reed S., Hackett J., Fierer J., Roudier C., Guiney D. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. J Clin Invest. 1992 Sep;90(3):953–964. doi: 10.1172/JCI115972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Heichman K. A., Johnson R. C. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science. 1990 Aug 3;249(4968):511–517. doi: 10.1126/science.2166334. [DOI] [PubMed] [Google Scholar]
  240. Helander I. M., Hirvas L., Tuominen J., Vaara M. Preferential synthesis of heptaacyl lipopolysaccharide by the ssc permeability mutant of Salmonella typhimurium. Eur J Biochem. 1992 Mar 15;204(3):1101–1106. doi: 10.1111/j.1432-1033.1992.tb16734.x. [DOI] [PubMed] [Google Scholar]
  241. Helander I. M., Vaara M., Sukupolvi S., Rhen M., Saarela S., Zähringer U., Mäkelä P. H. rfaP mutants of Salmonella typhimurium. Eur J Biochem. 1989 Nov 20;185(3):541–546. doi: 10.1111/j.1432-1033.1989.tb15147.x. [DOI] [PubMed] [Google Scholar]
  242. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Hess J. F., Oosawa K., Kaplan N., Simon M. I. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell. 1988 Apr 8;53(1):79–87. doi: 10.1016/0092-8674(88)90489-8. [DOI] [PubMed] [Google Scholar]
  244. Higgins C. F., Ames G. F. Regulatory regions of two transport operons under nitrogen control: nucleotide sequences. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1083–1087. doi: 10.1073/pnas.79.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Higgins C. F., Ames G. F. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6038–6042. doi: 10.1073/pnas.78.10.6038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Higgins C. F., Haag P. D., Nikaido K., Ardeshir F., Garcia G., Ames G. F. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature. 1982 Aug 19;298(5876):723–727. doi: 10.1038/298723a0. [DOI] [PubMed] [Google Scholar]
  247. Higgins C. F., Hiles I. D., Whalley K., Jamieson D. J. Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J. 1985 Apr;4(4):1033–1039. doi: 10.1002/j.1460-2075.1985.tb03735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Higgins C. F., Hinton J. C., Hulton C. S., Owen-Hughes T., Pavitt G. D., Seirafi A. Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence? Mol Microbiol. 1990 Dec;4(12):2007–2012. doi: 10.1111/j.1365-2958.1990.tb00559.x. [DOI] [PubMed] [Google Scholar]
  249. Higgins C. F., McLaren R. S., Newbury S. F. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene. 1988 Dec 10;72(1-2):3–14. doi: 10.1016/0378-1119(88)90122-9. [DOI] [PubMed] [Google Scholar]
  250. Higgins N. P., Hillyard D. Primary structure and mapping of the hupA gene of Salmonella typhimurium. J Bacteriol. 1988 Dec;170(12):5751–5758. doi: 10.1128/jb.170.12.5751-5758.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Hiles I. D., Gallagher M. P., Jamieson D. J., Higgins C. F. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol. 1987 May 5;195(1):125–142. doi: 10.1016/0022-2836(87)90332-9. [DOI] [PubMed] [Google Scholar]
  252. Hiles I. D., Higgins C. F. Peptide uptake by Salmonella typhimurium. The periplasmic oligopeptide-binding protein. Eur J Biochem. 1986 Aug 1;158(3):561–567. doi: 10.1111/j.1432-1033.1986.tb09791.x. [DOI] [PubMed] [Google Scholar]
  253. Hillyard D. R., Edlund M., Hughes K. T., Marsh M., Higgins N. P. Subunit-specific phenotypes of Salmonella typhimurium HU mutants. J Bacteriol. 1990 Sep;172(9):5402–5407. doi: 10.1128/jb.172.9.5402-5407.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Hinton J. C., Santos D. S., Seirafi A., Hulton C. S., Pavitt G. D., Higgins C. F. Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol Microbiol. 1992 Aug;6(16):2327–2337. doi: 10.1111/j.1365-2958.1992.tb01408.x. [DOI] [PubMed] [Google Scholar]
  255. Hirano T., Yamaguchi S., Oosawa K., Aizawa S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5439–5449. doi: 10.1128/jb.176.17.5439-5449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Hirvas L., Coleman J., Koski P., Vaara M. Bacterial 'histone-like protein I' (HLP-I) is an outer membrane constituent? FEBS Lett. 1990 Mar 12;262(1):123–126. doi: 10.1016/0014-5793(90)80169-j. [DOI] [PubMed] [Google Scholar]
  257. Hirvas L., Koski P., Vaara M. Identification and sequence analysis of the gene mutated in the conditionally lethal outer membrane permeability mutant SS-C of Salmonella typhimurium. EMBO J. 1991 Apr;10(4):1017–1023. doi: 10.1002/j.1460-2075.1991.tb08036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Hirvas L., Koski P., Vaara M. Primary structure and expression of the Ssc-protein of Salmonella typhimurium. Biochem Biophys Res Commun. 1990 Nov 30;173(1):53–59. doi: 10.1016/s0006-291x(05)81020-4. [DOI] [PubMed] [Google Scholar]
  259. Hirvas L., Vaara M. Effect of Ssc protein mutations on the outer membrane permeability barrier function in Salmonella typhimurium: a study using ssc mutant alleles made by site-directed mutagenesis. FEMS Microbiol Lett. 1992 Jan 15;69(3):289–294. doi: 10.1016/0378-1097(92)90662-8. [DOI] [PubMed] [Google Scholar]
  260. Hmiel S. P., Snavely M. D., Florer J. B., Maguire M. E., Miller C. G. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol. 1989 Sep;171(9):4742–4751. doi: 10.1128/jb.171.9.4742-4751.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Hof H., Ströder J., Buisson J. P., Royer R. Effect of different nitroheterocyclic compounds on aerobic, microaerophilic, and anaerobic bacteria. Antimicrob Agents Chemother. 1986 Nov;30(5):679–683. doi: 10.1128/aac.30.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Hogg R. W. The amino acid sequence of the histidine binding protein of Salmonella typhimurium. J Biol Chem. 1981 Feb 25;256(4):1935–1939. [PubMed] [Google Scholar]
  263. Holland M. M., Leib T. K., Gerlt J. A. Isolation and characterization of a small catalytic domain released from the adenylate cyclase from Escherichia coli by digestion with trypsin. J Biol Chem. 1988 Oct 15;263(29):14661–14668. [PubMed] [Google Scholar]
  264. Homma M., DeRosier D. J., Macnab R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J Mol Biol. 1990 Jun 20;213(4):819–832. doi: 10.1016/S0022-2836(05)80266-9. [DOI] [PubMed] [Google Scholar]
  265. Homma M., Komeda Y., Iino T., Macnab R. M. The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export. J Bacteriol. 1987 Apr;169(4):1493–1498. doi: 10.1128/jb.169.4.1493-1498.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Homma M., Kutsukake K., Hasebe M., Iino T., Macnab R. M. FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol. 1990 Jan 20;211(2):465–477. doi: 10.1016/0022-2836(90)90365-S. [DOI] [PubMed] [Google Scholar]
  267. Hong J. S., Ames B. N. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3158–3162. doi: 10.1073/pnas.68.12.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Hongo E., Morimyo M., Mita K., Machida I., Hama-Inaba H., Tsuji H., Ichimura S., Noda Y. The methyl viologen-resistance-encoding gene smvA of Salmonella typhimurium. Gene. 1994 Oct 11;148(1):173–174. doi: 10.1016/0378-1119(94)90255-0. [DOI] [PubMed] [Google Scholar]
  269. Horowitz H., Van Arsdell J., Platt T. Nucleotide sequence of the trpD and trpC genes of Salmonella typhimurium. J Mol Biol. 1983 Oct 5;169(4):775–797. doi: 10.1016/s0022-2836(83)80136-3. [DOI] [PubMed] [Google Scholar]
  270. Houng H. S., Kopecko D. J., Baron L. S. Molecular cloning and physical and functional characterization of the Salmonella typhimurium and Salmonella typhi galactose utilization operons. J Bacteriol. 1990 Aug;172(8):4392–4398. doi: 10.1128/jb.172.8.4392-4398.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Hoyer L. L., Hamilton A. C., Steenbergen S. M., Vimr E. R. Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH, provides evidence for interspecies gene transfer. Mol Microbiol. 1992 Apr;6(7):873–884. doi: 10.1111/j.1365-2958.1992.tb01538.x. [DOI] [PubMed] [Google Scholar]
  272. Hoyer L. L., Roggentin P., Schauer R., Vimr E. R. Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus-typical kinetic preference for sialyl alpha 2----3 linkages. J Biochem. 1991 Sep;110(3):462–467. doi: 10.1093/oxfordjournals.jbchem.a123603. [DOI] [PubMed] [Google Scholar]
  273. Hryniewicz M. M., Kredich N. M. Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol. 1994 Jun;176(12):3673–3682. doi: 10.1128/jb.176.12.3673-3682.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Hryniewicz M. M., Kredich N. M. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol. 1991 Sep;173(18):5876–5886. doi: 10.1128/jb.173.18.5876-5886.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Hryniewicz M., Sirko A., Pałucha A., Böck A., Hulanicka D. Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol. 1990 Jun;172(6):3358–3366. doi: 10.1128/jb.172.6.3358-3366.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Huang C. J., Barrett E. L. Identification and cloning of genes involved in anaerobic sulfite reduction by Salmonella typhimurium. J Bacteriol. 1990 Jul;172(7):4100–4102. doi: 10.1128/jb.172.7.4100-4102.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Huang C. J., Barrett E. L. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol. 1991 Feb;173(4):1544–1553. doi: 10.1128/jb.173.4.1544-1553.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Hughes D. Both genes for EF-Tu in Salmonella typhimurium are individually dispensable for growth. J Mol Biol. 1990 Sep 5;215(1):41–51. doi: 10.1016/S0022-2836(05)80093-2. [DOI] [PubMed] [Google Scholar]
  279. Hughes D., Buckingham R. H. The nucleotide sequence of rpsL and its flanking regions in Salmonella typhimurium. Gene. 1991 Jul 31;104(1):123–124. doi: 10.1016/0378-1119(91)90477-s. [DOI] [PubMed] [Google Scholar]
  280. Hughes D. Error-prone EF-Tu reduces in vivo enzyme activity and cellular growth rate. Mol Microbiol. 1991 Mar;5(3):623–630. doi: 10.1111/j.1365-2958.1991.tb00733.x. [DOI] [PubMed] [Google Scholar]
  281. Hughes K. T., Dessen A., Gray J. P., Grubmeyer C. The Salmonella typhimurium nadC gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase. J Bacteriol. 1993 Jan;175(2):479–486. doi: 10.1128/jb.175.2.479-486.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Hughes K. T., Roth J. R., Olivera B. M. A genetic characterization of the nadC gene of Salmonella typhimurium. Genetics. 1991 Apr;127(4):657–670. doi: 10.1093/genetics/127.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Hughes K. T., Youderian P., Simon M. I. Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in vivo. Genes Dev. 1988 Aug;2(8):937–948. doi: 10.1101/gad.2.8.937. [DOI] [PubMed] [Google Scholar]
  284. Hulton C. S., Seirafi A., Hinton J. C., Sidebotham J. M., Waddell L., Pavitt G. D., Owen-Hughes T., Spassky A., Buc H., Higgins C. F. Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell. 1990 Nov 2;63(3):631–642. doi: 10.1016/0092-8674(90)90458-q. [DOI] [PubMed] [Google Scholar]
  285. Hurme R., Namork E., Nurmiaho-Lassila E. L., Rhen M. Intermediate filament-like network formed in vitro by a bacterial coiled coil protein. J Biol Chem. 1994 Apr 8;269(14):10675–10682. [PubMed] [Google Scholar]
  286. Hyde C. C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem. 1988 Nov 25;263(33):17857–17871. [PubMed] [Google Scholar]
  287. Hyman H. C., Trachtenberg S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J Mol Biol. 1991 Jul 5;220(1):79–88. doi: 10.1016/0022-2836(91)90382-g. [DOI] [PubMed] [Google Scholar]
  288. Iino T., Komeda Y., Kutsukake K., Macnab R. M., Matsumura P., Parkinson J. S., Simon M. I., Yamaguchi S. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1988 Dec;52(4):533–535. doi: 10.1128/mr.52.4.533-535.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Ikeda T., Homma M., Iino T., Asakura S., Kamiya R. Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella. J Bacteriol. 1987 Mar;169(3):1168–1173. doi: 10.1128/jb.169.3.1168-1173.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Inoue Y. H., Kutsukake K., Iino T., Yamaguchi S. Sequence analysis of operator mutants of the phase-1 flagellin-encoding gene, fliC, in Salmonella typhimurium. Gene. 1989 Dec 21;85(1):221–226. doi: 10.1016/0378-1119(89)90485-x. [DOI] [PubMed] [Google Scholar]
  291. Irikura V. M., Kihara M., Yamaguchi S., Sockett H., Macnab R. M. Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J Bacteriol. 1993 Feb;175(3):802–810. doi: 10.1128/jb.175.3.802-810.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Ishima R., Akasaka K., Aizawa S., Vonderviszt F. Mobility of the terminal regions of flagellin in solution. J Biol Chem. 1991 Dec 15;266(35):23682–23688. [PubMed] [Google Scholar]
  293. Isihara H., Hogg R. W. Amino acid sequence of the sulfate-binding protein from Salmonella typhimurium LT2. J Biol Chem. 1980 May 25;255(10):4614–4618. [PubMed] [Google Scholar]
  294. Island M. D., Wei B. Y., Kadner R. J. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1992 May;174(9):2754–2762. doi: 10.1128/jb.174.9.2754-2762.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Itaya M., McKelvin D., Chatterjie S. K., Crouch R. J. Selective cloning of genes encoding RNase H from Salmonella typhimurium, Saccharomyces cerevisiae and Escherichia coli rnh mutant. Mol Gen Genet. 1991 Jul;227(3):438–445. doi: 10.1007/BF00273935. [DOI] [PubMed] [Google Scholar]
  296. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989 Jan 25;264(3):1488–1496. [PubMed] [Google Scholar]
  297. Jahreis K., Postma P. W., Lengeler J. W. Nucleotide sequence of the ilvH-fruR gene region of Escherichia coli K12 and Salmonella typhimurium LT2. Mol Gen Genet. 1991 Apr;226(1-2):332–336. doi: 10.1007/BF00273623. [DOI] [PubMed] [Google Scholar]
  298. Janson C. A., Kayne P. S., Almassy R. J., Grunstein M., Eisenberg D. Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure. Gene. 1986;46(2-3):297–300. doi: 10.1016/0378-1119(86)90415-4. [DOI] [PubMed] [Google Scholar]
  299. Jennings M. P., Scott S. P., Beacham I. R. Regulation of the ansB gene of Salmonella enterica. Mol Microbiol. 1993 Jul;9(1):165–172. doi: 10.1111/j.1365-2958.1993.tb01678.x. [DOI] [PubMed] [Google Scholar]
  300. Jensen K. F. Regulation of Salmonella typhimurium pyr gene expression: effect of changing both purine and pyrimidine nucleotide pools. J Gen Microbiol. 1989 Apr;135(4):805–815. doi: 10.1099/00221287-135-4-805. [DOI] [PubMed] [Google Scholar]
  301. Jeter R. M. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol. 1990 May;136(5):887–896. doi: 10.1099/00221287-136-5-887. [DOI] [PubMed] [Google Scholar]
  302. Jiang S. Q., Yu G. Q., Li Z. G., Hong J. S. Genetic evidence for modulation of the activator by two regulatory proteins involved in the exogenous induction of phosphoglycerate transport in Salmonella typhimurium. J Bacteriol. 1988 Sep;170(9):4304–4308. doi: 10.1128/jb.170.9.4304-4308.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol. 1991 Mar;5(3):695–713. doi: 10.1111/j.1365-2958.1991.tb00741.x. [DOI] [PubMed] [Google Scholar]
  304. Johanson U., Hughes D. Comparison of the complete sequence of the str operon in Salmonella typhimurium and Escherichia coli. Gene. 1992 Oct 12;120(1):93–98. doi: 10.1016/0378-1119(92)90014-g. [DOI] [PubMed] [Google Scholar]
  305. Johnson B. N., Weintraub A., Lindberg A. A., Stocker B. A. Construction of Salmonella strains with both antigen O4 (of group B) and antigen O9 (of group D). J Bacteriol. 1992 Mar;174(6):1911–1915. doi: 10.1128/jb.174.6.1911-1915.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Johnson K., Charles I., Dougan G., Pickard D., O'Gaora P., Costa G., Ali T., Miller I., Hormaeche C. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol. 1991 Feb;5(2):401–407. doi: 10.1111/j.1365-2958.1991.tb02122.x. [DOI] [PubMed] [Google Scholar]
  307. Johnson M. G., Escalante-Semerena J. C. Identification of 5,6-dimethylbenzimidazole as the Co alpha ligand of the cobamide synthesized by Salmonella typhimurium. Nutritional characterization of mutants defective in biosynthesis of the imidazole ring. J Biol Chem. 1992 Jul 5;267(19):13302–13305. [PubMed] [Google Scholar]
  308. Jones B. D., Falkow S. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun. 1994 Sep;62(9):3745–3752. doi: 10.1128/iai.62.9.3745-3752.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Jones B. D., Ghori N., Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994 Jul 1;180(1):15–23. doi: 10.1084/jem.180.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Jones C. J., Homma M., Macnab R. M. L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol. 1989 Jul;171(7):3890–3900. doi: 10.1128/jb.171.7.3890-3900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Jones C. J., Macnab R. M. Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J Bacteriol. 1990 Mar;172(3):1327–1339. doi: 10.1128/jb.172.3.1327-1339.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Jones C. J., Macnab R. M., Okino H., Aizawa S. Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol. 1990 Mar 20;212(2):377–387. doi: 10.1016/0022-2836(90)90132-6. [DOI] [PubMed] [Google Scholar]
  313. Jones W. R., Barcak G. J., Wolf R. E., Jr Altered growth-rate-dependent regulation of 6-phosphogluconate dehydrogenase level in hisT mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1990 Mar;172(3):1197–1205. doi: 10.1128/jb.172.3.1197-1205.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Jordan A., Gibert I., Barbé J. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol. 1994 Jun;176(11):3420–3427. doi: 10.1128/jb.176.11.3420-3427.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Jovanovich S. B., Martinell M., Record M. T., Jr, Burgess R. R. Rapid response to osmotic upshift by osmoregulated genes in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 Feb;170(2):534–539. doi: 10.1128/jb.170.2.534-539.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Joys T. M. The covalent structure of the phase-1 flagellar filament protein of Salmonella typhimurium and its comparison with other flagellins. J Biol Chem. 1985 Dec 15;260(29):15758–15761. [PubMed] [Google Scholar]
  317. Kang C. H., Shin W. C., Yamagata Y., Gokcen S., Ames G. F., Kim S. H. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem. 1991 Dec 15;266(35):23893–23899. [PubMed] [Google Scholar]
  318. Kaniga K., Bossio J. C., Galán J. E. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol. 1994 Aug;13(4):555–568. doi: 10.1111/j.1365-2958.1994.tb00450.x. [DOI] [PubMed] [Google Scholar]
  319. Kanto S., Okino H., Aizawa S., Yamaguchi S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J Mol Biol. 1991 Jun 5;219(3):471–480. doi: 10.1016/0022-2836(91)90187-b. [DOI] [PubMed] [Google Scholar]
  320. Kanzaki H., McPhie P., Miles E. W. Effect of single amino acid substitutions at positions 49 and 60 on the thermal unfolding of the tryptophan synthase alpha subunit from Salmonella typhimurium. Arch Biochem Biophys. 1991 Jan;284(1):174–180. doi: 10.1016/0003-9861(91)90280-v. [DOI] [PubMed] [Google Scholar]
  321. Kaplan J. B., Merkel W. K., Nichols B. P. Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J Mol Biol. 1985 Jun 5;183(3):327–340. doi: 10.1016/0022-2836(85)90004-x. [DOI] [PubMed] [Google Scholar]
  322. Karlsson M., Hannavy K., Higgins C. F. A sequence-specific function for the N-terminal signal-like sequence of the TonB protein. Mol Microbiol. 1993 Apr;8(2):379–388. doi: 10.1111/j.1365-2958.1993.tb01581.x. [DOI] [PubMed] [Google Scholar]
  323. Kasahara M., Nakata A., Shinagawa H. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J Bacteriol. 1991 Nov;173(21):6760–6765. doi: 10.1128/jb.173.21.6760-6765.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Kawagishi I., Müller V., Williams A. W., Irikura V. M., Macnab R. M. Subdivision of flagellar region III of the Escherichia coli and Salmonella typhimurium chromosomes and identification of two additional flagellar genes. J Gen Microbiol. 1992 Jun;138(6):1051–1065. doi: 10.1099/00221287-138-6-1051. [DOI] [PubMed] [Google Scholar]
  325. Kawakami K., Nakamura Y. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8432–8436. doi: 10.1073/pnas.87.21.8432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Kayastha A. M., Sawa Y., Nagata S., Miles E. W. Site-directed mutagenesis of the beta subunit of tryptophan synthase from Salmonella typhimurium. Role of active site glutamic acid 350. J Biol Chem. 1991 Apr 25;266(12):7618–7625. [PubMed] [Google Scholar]
  327. Kelln R. A., Neuhard J. Regulation of pyrC expression in Salmonella typhimurium: identification of a regulatory region. Mol Gen Genet. 1988 May;212(2):287–294. doi: 10.1007/BF00334698. [DOI] [PubMed] [Google Scholar]
  328. Khan I. H., Reese T. S., Khan S. The cytoplasmic component of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5956–5960. doi: 10.1073/pnas.89.13.5956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Kihara M., Homma M., Kutsukake K., Macnab R. M. Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol. 1989 Jun;171(6):3247–3257. doi: 10.1128/jb.171.6.3247-3257.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Kilstrup M., Lu C. D., Abdelal A., Neuhard J. Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. Eur J Biochem. 1988 Sep 15;176(2):421–429. doi: 10.1111/j.1432-1033.1988.tb14299.x. [DOI] [PubMed] [Google Scholar]
  331. Kim S. S., Datta P. Chemical characterization of biodegradative threonine dehydratases from two enteric bacteria. Biochim Biophys Acta. 1982 Aug 23;706(1):27–35. doi: 10.1016/0167-4838(82)90371-5. [DOI] [PubMed] [Google Scholar]
  332. Klena J. D., Pradel E., Schnaitman C. A. Comparison of lipopolysaccharide biosynthesis genes rfaK, rfaL, rfaY, and rfaZ of Escherichia coli K-12 and Salmonella typhimurium. J Bacteriol. 1992 Jul;174(14):4746–4752. doi: 10.1128/jb.174.14.4746-4752.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Klena J. D., Pradel E., Schnaitman C. A. The rfaS gene, which is involved in production of a rough form of lipopolysaccharide core in Escherichia coli K-12, is not present in the rfa cluster of Salmonella typhimurium LT2. J Bacteriol. 1993 Mar;175(5):1524–1527. doi: 10.1128/jb.175.5.1524-1527.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Knox J. R., Liu H. S., Walsh C. T., Zawadzke L. E. D-alanine-D-alanine ligase (ADP) from Salmonella typhimurium. Overproduction, purification, crystallization and preliminary X-ray analysis. J Mol Biol. 1989 Jan 20;205(2):461–463. doi: 10.1016/0022-2836(89)90357-4. [DOI] [PubMed] [Google Scholar]
  335. Koch W. H., Cebula T. A., Foster P. L., Eisenstadt E. UV mutagenesis in Salmonella typhimurium is umuDC dependent despite the presence of samAB. J Bacteriol. 1992 May;174(9):2809–2815. doi: 10.1128/jb.174.9.2809-2815.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Koebnik R., Hantke K., Braun V. The TonB-dependent ferrichrome receptor FcuA of Yersinia enterocolitica: evidence against a strict co-evolution of receptor structure and substrate specificity. Mol Microbiol. 1993 Feb;7(3):383–393. doi: 10.1111/j.1365-2958.1993.tb01130.x. [DOI] [PubMed] [Google Scholar]
  337. Koski P., Hirvas L., Vaara M. Complete sequence of the ompH gene encoding the 16-kDa cationic outer membrane protein of Salmonella typhimurium. Gene. 1990 Mar 30;88(1):117–120. doi: 10.1016/0378-1119(90)90068-3. [DOI] [PubMed] [Google Scholar]
  338. Koski P., Rhen M., Kantele J., Vaara M. Isolation, cloning, and primary structure of a cationic 16-kDa outer membrane protein of Salmonella typhimurium. J Biol Chem. 1989 Nov 15;264(32):18973–18980. [PubMed] [Google Scholar]
  339. Koski P., Saarilahti H., Sukupolvi S., Taira S., Riikonen P., Osterlund K., Hurme R., Rhen M. A new alpha-helical coiled coil protein encoded by the Salmonella typhimurium virulence plasmid. J Biol Chem. 1992 Jun 15;267(17):12258–12265. [PubMed] [Google Scholar]
  340. Kotani H., Nakajima K. Cloning and sequence of thioredoxin gene of Salmonella typhimurium LT2. Nucleic Acids Res. 1992 Mar 25;20(6):1424–1424. doi: 10.1093/nar/20.6.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Kowarz L., Coynault C., Robbe-Saule V., Norel F. The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. J Bacteriol. 1994 Nov;176(22):6852–6860. doi: 10.1128/jb.176.22.6852-6860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Krause M., Fang F. C., Guiney D. G. Regulation of plasmid virulence gene expression in Salmonella dublin involves an unusual operon structure. J Bacteriol. 1992 Jul;174(13):4482–4489. doi: 10.1128/jb.174.13.4482-4489.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Krone F. A., Westphal G., Schwenn J. D. Characterisation of the gene cysH and of its product phospho-adenylylsulphate reductase from Escherichia coli. Mol Gen Genet. 1991 Feb;225(2):314–319. doi: 10.1007/BF00269864. [DOI] [PubMed] [Google Scholar]
  344. Kubori T., Shimamoto N., Yamaguchi S., Namba K., Aizawa S. Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol. 1992 Jul 20;226(2):433–446. doi: 10.1016/0022-2836(92)90958-m. [DOI] [PubMed] [Google Scholar]
  345. Kuroda M., de Waard S., Mizushima K., Tsuda M., Postma P., Tsuchiya T. Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium. J Biol Chem. 1992 Sep 15;267(26):18336–18341. [PubMed] [Google Scholar]
  346. Kutsukake K., Doi H. Nucleotide sequence of the flgD gene of Salmonella typhimurium which is essential for flagellar hook formation. Biochim Biophys Acta. 1994 Aug 2;1218(3):443–446. doi: 10.1016/0167-4781(94)90202-x. [DOI] [PubMed] [Google Scholar]
  347. Kutsukake K., Iino T. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol. 1994 Jun;176(12):3598–3605. doi: 10.1128/jb.176.12.3598-3605.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Kutsukake K., Minamino T., Yokoseki T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol. 1994 Dec;176(24):7625–7629. doi: 10.1128/jb.176.24.7625-7629.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  349. Kutsukake K., Ohya Y., Iino T. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):741–747. doi: 10.1128/jb.172.2.741-747.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Kutsukake K., Ohya Y., Yamaguchi S., Iino T. Operon structure of flagellar genes in Salmonella typhimurium. Mol Gen Genet. 1988 Sep;214(1):11–15. doi: 10.1007/BF00340172. [DOI] [PubMed] [Google Scholar]
  351. Kutsukake K., Okada T., Yokoseki T., Iino T. Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene. 1994 May 27;143(1):49–54. doi: 10.1016/0378-1119(94)90603-3. [DOI] [PubMed] [Google Scholar]
  352. LaRossa R. A., Van Dyk T. K. Leaky pantothenate and thiamin mutations of Salmonella typhimurium conferring suphometuron methyl sensitivity. J Gen Microbiol. 1989 Aug;135(8):2209–2222. doi: 10.1099/00221287-135-8-2209. [DOI] [PubMed] [Google Scholar]
  353. Lam S., Roth J. R. Genetic mapping of IS200 copies in Salmonella typhimurim strain LT2. Genetics. 1983 Dec;105(4):801–811. doi: 10.1093/genetics/105.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Lam S., Roth J. R. IS200: a Salmonella-specific insertion sequence. Cell. 1983 Oct;34(3):951–960. doi: 10.1016/0092-8674(83)90552-4. [DOI] [PubMed] [Google Scholar]
  355. Lam S., Roth J. R. Structural and functional studies of insertion element IS200. J Mol Biol. 1986 Jan 20;187(2):157–167. doi: 10.1016/0022-2836(86)90225-1. [DOI] [PubMed] [Google Scholar]
  356. Lancy E. D., Lifsics M. R., Kehres D. G., Maurer R. Isolation and characterization of mutants with deletions in dnaQ, the gene for the editing subunit of DNA polymerase III in Salmonella typhimurium. J Bacteriol. 1989 Oct;171(10):5572–5580. doi: 10.1128/jb.171.10.5572-5580.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  357. Lancy E. D., Lifsics M. R., Munson P., Maurer R. Nucleotide sequences of dnaE, the gene for the polymerase subunit of DNA polymerase III in Salmonella typhimurium, and a variant that facilitates growth in the absence of another polymerase subunit. J Bacteriol. 1989 Oct;171(10):5581–5586. doi: 10.1128/jb.171.10.5581-5586.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Lapidus I. R., Welch M., Eisenbach M. Pausing of flagellar rotation is a component of bacterial motility and chemotaxis. J Bacteriol. 1988 Aug;170(8):3627–3632. doi: 10.1128/jb.170.8.3627-3632.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Lawrence J. G., Ochman H., Hartl D. L. Molecular and evolutionary relationships among enteric bacteria. J Gen Microbiol. 1991 Aug;137(8):1911–1921. doi: 10.1099/00221287-137-8-1911. [DOI] [PubMed] [Google Scholar]
  360. Lawther R. P., Wek R. C., Lopes J. M., Pereira R., Taillon B. E., Hatfield G. W. The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res. 1987 Mar 11;15(5):2137–2155. doi: 10.1093/nar/15.5.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Lee C. A., Jones B. D., Falkow S. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1847–1851. doi: 10.1073/pnas.89.5.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  362. Lee F., Bertrand K., Bennett G., Yanofsky C. Comparison of the nucleotide sequences of the initial transcribed regions of the tryptophan operons of Escherichia coli and Salmonella typhimurium. J Mol Biol. 1978 May 15;121(2):193–217. doi: 10.1016/s0022-2836(78)80005-9. [DOI] [PubMed] [Google Scholar]
  363. Leong J. M., Nunes-Düby S., Lesser C. F., Youderian P., Susskind M. M., Landy A. The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor. J Biol Chem. 1985 Apr 10;260(7):4468–4477. [PubMed] [Google Scholar]
  364. Leung P. S., Preiss J. Biosynthesis of bacterial glycogen: primary structure of Salmonella typhimurium ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J Bacteriol. 1987 Sep;169(9):4355–4360. doi: 10.1128/jb.169.9.4355-4360.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  365. Levy M. S., Pomposiello P., Nagel R. RecA-dependent increased precise excision of Tn10 in Salmonella typhimurium. Mutat Res. 1991 Jul;255(1):95–100. doi: 10.1016/0921-8777(91)90022-h. [DOI] [PubMed] [Google Scholar]
  366. LiCalsi C., Crocenzi T. S., Freire E., Roseman S. Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J Biol Chem. 1991 Oct 15;266(29):19519–19527. [PubMed] [Google Scholar]
  367. Li S. L., Hanlon J., Yanofsky C. Separation of anthranilate synthetase components I and II of Escherichia coli, Salmonella typhimurium, and Serratia marcescens and determination of their amino-terminal sequences by automatic Edman degradation. Biochemistry. 1974 Apr 9;13(8):1736–1744. doi: 10.1021/bi00705a028. [DOI] [PubMed] [Google Scholar]
  368. Li S. L., Yanofsky C. Amino acid sequence studies with the tryptophan synthetase chain of Salmonella typhimurium. J Biol Chem. 1973 Mar 10;248(5):1830–1836. [PubMed] [Google Scholar]
  369. Li Y. F., Sancar A. Cloning, sequencing, expression and characterization of DNA photolyase from Salmonella typhimurium. Nucleic Acids Res. 1991 Sep 25;19(18):4885–4890. doi: 10.1093/nar/19.18.4885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  370. Li Z. J., Hillyard D., Higgins P. Nucleotide sequence of the Salmonella typhimurium himA gene. Nucleic Acids Res. 1989 Nov 11;17(21):8880–8880. doi: 10.1093/nar/17.21.8880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Libby S. J., Goebel W., Ludwig A., Buchmeier N., Bowe F., Fang F. C., Guiney D. G., Songer J. G., Heffron F. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):489–493. doi: 10.1073/pnas.91.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  372. Libby S. J., Goebel W., Muir S., Songer G., Heffron F. Cloning and characterization of a cytotoxin gene from Salmonella typhimurium. Res Microbiol. 1990 Sep-Oct;141(7-8):775–783. doi: 10.1016/0923-2508(90)90110-c. [DOI] [PubMed] [Google Scholar]
  373. Lifsics M. R., Lancy E. D., Jr, Maurer R. DNA replication defect in Salmonella typhimurium mutants lacking the editing (epsilon) subunit of DNA polymerase III. J Bacteriol. 1992 Nov;174(21):6965–6973. doi: 10.1128/jb.174.21.6965-6973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Liljeström P., Laamanen I., Palva E. T. Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. J Mol Biol. 1988 Jun 20;201(4):663–673. doi: 10.1016/0022-2836(88)90465-2. [DOI] [PubMed] [Google Scholar]
  375. Lilley D. M., Higgins C. F. Local DNA topology and gene expression: the case of the leu-500 promoter. Mol Microbiol. 1991 Apr;5(4):779–783. doi: 10.1111/j.1365-2958.1991.tb00749.x. [DOI] [PubMed] [Google Scholar]
  376. Lin H. C., Lei S. P., Studnicka G., Wilcox G. The araBAD operon of Salmonella typhimurium LT2. III. Nucleotide sequence of araD and its flanking regions, and primary structure of its product, L-ribulose-5-phosphate 4-epimerase. Gene. 1985;34(1):129–134. doi: 10.1016/0378-1119(85)90303-8. [DOI] [PubMed] [Google Scholar]
  377. Lin H. C., Lei S. P., Wilcox G. The araBAD operon of Salmonella typhimurium LT2. I. Nucleotide sequence of araB and primary structure of its product, ribulokinase. Gene. 1985;34(1):111–122. doi: 10.1016/0378-1119(85)90301-4. [DOI] [PubMed] [Google Scholar]
  378. Lin H. C., Lei S. P., Wilcox G. The araBAD operon of Salmonella typhimurium LT2. II. Nucleotide sequence of araA and primary structure of its product, L-arabinose isomerase. Gene. 1985;34(1):123–128. doi: 10.1016/0378-1119(85)90302-6. [DOI] [PubMed] [Google Scholar]
  379. Lindquist L., Kaiser R., Reeves P. R., Lindberg A. A. Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyl-transferase from the cloned rfbA gene. Eur J Biochem. 1993 Feb 1;211(3):763–770. doi: 10.1111/j.1432-1033.1993.tb17607.x. [DOI] [PubMed] [Google Scholar]
  380. Lindqvist L., Kaiser R., Reeves P. R., Lindberg A. A. Purification, characterization, and high performance liquid chromatography assay of Salmonella glucose-1-phosphate cytidylyltransferase from the cloned rfbF gene. J Biol Chem. 1994 Jan 7;269(1):122–126. [PubMed] [Google Scholar]
  381. Lindqvist L., Schweda K. H., Reeves P. R., Lindberg A. A. In vitro synthesis of CDP-d-abequose using Salmonella enzymes of cloned rfb genes. Production of CDP-6-deoxy-D-xylo-4-hexulose, CDP-3,6-dideoxy-D-xylo-4-hexulose and CDP-3,6-dideoxy-D-galactose, and isolation by HPLC. Eur J Biochem. 1994 Nov 1;225(3):863–872. doi: 10.1111/j.1432-1033.1994.0863b.x. [DOI] [PubMed] [Google Scholar]
  382. Lisitsyn N. A., Monastyrskaya G. S., Sverdlov E. D. Genes coding for RNA polymerase beta subunit in bacteria. Structure/function analysis. Eur J Biochem. 1988 Nov 1;177(2):363–369. doi: 10.1111/j.1432-1033.1988.tb14385.x. [DOI] [PubMed] [Google Scholar]
  383. Liu D., Haase A. M., Lindqvist L., Lindberg A. A., Reeves P. R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J Bacteriol. 1993 Jun;175(11):3408–3413. doi: 10.1128/jb.175.11.3408-3413.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  384. Liu D., Verma N. K., Romana L. K., Reeves P. R. Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol. 1991 Aug;173(15):4814–4819. doi: 10.1128/jb.173.15.4814-4819.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  385. Liu J., Beacham I. R. Transcription and regulation of the cpdB gene in Escherichia coli K12 and Salmonella typhimurium LT2: evidence for modulation of constitutive promoters by cyclic AMP-CRP complex. Mol Gen Genet. 1990 Jun;222(1):161–165. doi: 10.1007/BF00283039. [DOI] [PubMed] [Google Scholar]
  386. Liu S. L., Hessel A., Sanderson K. E. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6874–6878. doi: 10.1073/pnas.90.14.6874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  387. Liu S. L., Hessel A., Sanderson K. E. The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol. 1993 Jul;175(13):4104–4120. doi: 10.1128/jb.175.13.4104-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Liu S. L., Sanderson K. E. A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol. 1992 Mar;174(5):1662–1672. doi: 10.1128/jb.174.5.1662-1672.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  389. Liveris D., Schwartz J. J., Geertman R., Schwartz I. Molecular cloning and sequencing of infC, the gene encoding translation initiation factor IF3, from four enterobacterial species. FEMS Microbiol Lett. 1993 Sep 1;112(2):211–216. doi: 10.1111/j.1574-6968.1993.tb06450.x. [DOI] [PubMed] [Google Scholar]
  390. Lockman H. A., Curtiss R., 3rd Isolation and characterization of conditional adherent and non-type 1 fimbriated Salmonella typhimurium mutants. Mol Microbiol. 1992 Apr;6(7):933–945. doi: 10.1111/j.1365-2958.1992.tb01543.x. [DOI] [PubMed] [Google Scholar]
  391. Lockman H. A., Curtiss R., 3rd Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun. 1990 Jan;58(1):137–143. doi: 10.1128/iai.58.1.137-143.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. Lockman H. A., Curtiss R., 3rd Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect Immun. 1992 Feb;60(2):491–496. doi: 10.1128/iai.60.2.491-496.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  393. Loewen P. C., Stauffer G. V. Nucleotide sequence of katG of Salmonella typhimurium LT2 and characterization of its product, hydroperoxidase I. Mol Gen Genet. 1990 Oct;224(1):147–151. doi: 10.1007/BF00259461. [DOI] [PubMed] [Google Scholar]
  394. Lombardo M. J., Bagga D., Miller C. G. Mutations in rpoA affect expression of anaerobically regulated genes in Salmonella typhimurium. J Bacteriol. 1991 Dec;173(23):7511–7518. doi: 10.1128/jb.173.23.7511-7518.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  395. Lopes J. M., Lawther R. P. Analysis and comparison of the internal promoter, pE, of the ilvGMEDA operons from Escherichia coli K-12 and Salmonella typhimurium. Nucleic Acids Res. 1986 Mar 25;14(6):2779–2798. doi: 10.1093/nar/14.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  396. Lopes J. M., Lawther R. P. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. Gene. 1989;76(2):255–269. doi: 10.1016/0378-1119(89)90166-2. [DOI] [PubMed] [Google Scholar]
  397. Lorenzo C., Howard E., Nagel R. Studies on Tn10 transposition and excision in DNA-repair mutants of Salmonella typhimurium. Mutat Res. 1990 Sep;232(1):99–104. doi: 10.1016/0027-5107(90)90115-k. [DOI] [PubMed] [Google Scholar]
  398. Lu A. L., Cuipa M. J., Ip M. S., Shanabruch W. G. Specific A/G-to-C.G mismatch repair in Salmonella typhimurium LT2 requires the mutB gene product. J Bacteriol. 1990 Mar;172(3):1232–1240. doi: 10.1128/jb.172.3.1232-1240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  399. Lu C. D., Abdelal A. T. Complete sequence of the Salmonella typhimurium gene encoding malate dehydrogenase. Gene. 1993 Jan 15;123(1):143–144. doi: 10.1016/0378-1119(93)90554-g. [DOI] [PubMed] [Google Scholar]
  400. Lu C. D., Abdelal A. T. The Salmonella typhimurium uracil-sensitive mutation use is in argU and encodes a minor arginine tRNA. J Bacteriol. 1993 Jun;175(12):3897–3899. doi: 10.1128/jb.175.12.3897-3899.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  401. Lu C. D., Houghton J. E., Abdelal A. T. Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator. J Mol Biol. 1992 May 5;225(1):11–24. doi: 10.1016/0022-2836(92)91022-h. [DOI] [PubMed] [Google Scholar]
  402. Lu C. D., Kilstrup M., Neuhard J., Abdelal A. Pyrimidine regulation of tandem promoters for carAB in Salmonella typhimurium. J Bacteriol. 1989 Oct;171(10):5436–5442. doi: 10.1128/jb.171.10.5436-5442.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  403. Lukat G. S., Lee B. H., Mottonen J. M., Stock A. M., Stock J. B. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem. 1991 May 5;266(13):8348–8354. [PubMed] [Google Scholar]
  404. Lukat G. S., Stock A. M., Stock J. B. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry. 1990 Jun 12;29(23):5436–5442. doi: 10.1021/bi00475a004. [DOI] [PubMed] [Google Scholar]
  405. Lupas A., Stock J. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J Biol Chem. 1989 Oct 15;264(29):17337–17342. [PubMed] [Google Scholar]
  406. Luttinger A. L., Springer A. L., Schmid M. B. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol. 1991 Jul;3(7):687–697. [PubMed] [Google Scholar]
  407. MacLachlan P. R., Kadam S. K., Sanderson K. E. Cloning, characterization, and DNA sequence of the rfaLK region for lipopolysaccharide synthesis in Salmonella typhimurium LT2. J Bacteriol. 1991 Nov;173(22):7151–7163. doi: 10.1128/jb.173.22.7151-7163.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  408. MacPhee D. G. Effect of rec mutations on the ultraviolet protecting and mutation-enhancing properties of the plasmid R-Utrecht in Salmonella typhimurium. Mutat Res. 1973 Sep;19(3):357–359. doi: 10.1016/0027-5107(73)90237-6. [DOI] [PubMed] [Google Scholar]
  409. Macias E. A., Rana F., Blazyk J., Modrzakowski M. C. Bactericidal activity of magainin 2: use of lipopolysaccharide mutants. Can J Microbiol. 1990 Aug;36(8):582–584. doi: 10.1139/m90-102. [DOI] [PubMed] [Google Scholar]
  410. Mack D. P., Sluka J. P., Shin J. A., Griffin J. H., Simon M. I., Dervan P. B. Orientation of the putative recognition helix in the DNA-binding domain of Hin recombinase complexed with the hix site. Biochemistry. 1990 Jul 17;29(28):6561–6567. doi: 10.1021/bi00480a003. [DOI] [PubMed] [Google Scholar]
  411. Magariyama Y., Yamaguchi S., Aizawa S. Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. J Bacteriol. 1990 Aug;172(8):4359–4369. doi: 10.1128/jb.172.8.4359-4369.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  412. Mahan M. J., Casadesus J., Roth J. R. The Salmonella typhimurium RecJ function permits growth of P22 abc phage on recBCD+ hosts. Mol Gen Genet. 1992 Apr;232(3):470–478. doi: 10.1007/BF00266252. [DOI] [PubMed] [Google Scholar]
  413. Mahan M. J., Garzón A., Casadesús J. Host RecJ is required for growth of P22 erf bacteriophage. J Bacteriol. 1993 Jan;175(1):288–290. doi: 10.1128/jb.175.1.288-290.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  414. Mahan M. J., Roth J. R. recB and recC genes of Salmonella typhimurium. J Bacteriol. 1989 Jan;171(1):612–615. doi: 10.1128/jb.171.1.612-615.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  415. Mankovich J. A., McIntyre C. A., Walker G. C. Nucleotide sequence of the Salmonella typhimurium mutL gene required for mismatch repair: homology of MutL to HexB of Streptococcus pneumoniae and to PMS1 of the yeast Saccharomyces cerevisiae. J Bacteriol. 1989 Oct;171(10):5325–5331. doi: 10.1128/jb.171.10.5325-5331.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  416. Mares R., Urbanowski M. L., Stauffer G. V. Regulation of the Salmonella typhimurium metA gene by the metR protein and homocysteine. J Bacteriol. 1992 Jan;174(2):390–397. doi: 10.1128/jb.174.2.390-397.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  417. Marsh M., Hillyard D. R. Nucleotide sequence of hns encoding the DNA-binding protein H-NS of Salmonella typhimurium. Nucleic Acids Res. 1990 Jun 11;18(11):3397–3397. doi: 10.1093/nar/18.11.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  418. Marsh M., Hillyard D. R. Nucleotide sequence of the HU-1 gene of Salmonella typhimurium. Nucleic Acids Res. 1988 Jul 25;16(14B):7196–7196. doi: 10.1093/nar/16.14.7196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  419. Marumo K., Lindqvist L., Verma N., Weintraub A., Reeves P. R., Lindberg A. A. Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-D-xylo-4-hexulose and thymidine diphosphate-L-rhamnose. Production using cloned gene products and separation by HPLC. Eur J Biochem. 1992 Mar 1;204(2):539–545. doi: 10.1111/j.1432-1033.1992.tb16665.x. [DOI] [PubMed] [Google Scholar]
  420. Matsubara K., Ohnishi K., Kiritani K. Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium. J Biochem. 1992 Jul;112(1):93–101. doi: 10.1093/oxfordjournals.jbchem.a123872. [DOI] [PubMed] [Google Scholar]
  421. Maurelli A. T. Virulence protein export systems in Salmonella and Shigella: a new family or lost relatives? Trends Cell Biol. 1994 Jul;4(7):240–242. doi: 10.1016/0962-8924(94)90116-3. [DOI] [PubMed] [Google Scholar]
  422. Michaels G., Kelln R. A., Nargang F. E. Cloning, nucleotide sequence and expression of the pyrBI operon of Salmonella typhimurium LT2. Eur J Biochem. 1987 Jul 1;166(1):55–61. doi: 10.1111/j.1432-1033.1987.tb13483.x. [DOI] [PubMed] [Google Scholar]
  423. Miesel L., Roth J. R. Salmonella recD mutations increase recombination in a short sequence transduction assay. J Bacteriol. 1994 Jul;176(13):4092–4103. doi: 10.1128/jb.176.13.4092-4103.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  424. Miller C. G., Kukral A. M., Miller J. L., Movva N. R. pepM is an essential gene in Salmonella typhimurium. J Bacteriol. 1989 Sep;171(9):5215–5217. doi: 10.1128/jb.171.9.5215-5217.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  425. Miller C. G., Miller J. L., Bagga D. A. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol. 1991 Jun;173(11):3554–3558. doi: 10.1128/jb.173.11.3554-3558.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  426. Miller K., Maloy S. DNA sequence of the putP gene from Salmonella typhimurium and predicted structure of proline permease. Nucleic Acids Res. 1990 May 25;18(10):3057–3057. doi: 10.1093/nar/18.10.3057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  427. Miller S. I., Kukral A. M., Mekalanos J. J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054–5058. doi: 10.1073/pnas.86.13.5054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  428. Miller S. I., Mekalanos J. J. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol. 1990 May;172(5):2485–2490. doi: 10.1128/jb.172.5.2485-2490.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  429. Miller S. I. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol Microbiol. 1991 Sep;5(9):2073–2078. doi: 10.1111/j.1365-2958.1991.tb02135.x. [DOI] [PubMed] [Google Scholar]
  430. Miller S. I., Pulkkinen W. S., Selsted M. E., Mekalanos J. J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun. 1990 Nov;58(11):3706–3710. doi: 10.1128/iai.58.11.3706-3710.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  431. Miller V. L., Beer K. B., Loomis W. P., Olson J. A., Miller S. I. An unusual pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect Immun. 1992 Sep;60(9):3763–3770. doi: 10.1128/iai.60.9.3763-3770.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  432. Mills D. M., Bajaj V., Lee C. A. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol. 1995 Feb;15(4):749–759. doi: 10.1111/j.1365-2958.1995.tb02382.x. [DOI] [PubMed] [Google Scholar]
  433. Miloso M., Limauro D., Alifano P., Rivellini F., Lavitola A., Gulletta E., Bruni C. B. Characterization of the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. J Bacteriol. 1993 Dec;175(24):8030–8037. doi: 10.1128/jb.175.24.8030-8037.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  434. Minamino T., Iino T., Kutuskake K. Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J Bacteriol. 1994 Dec;176(24):7630–7637. doi: 10.1128/jb.176.24.7630-7637.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  435. Mizushima K., Awakihara S., Kuroda M., Ishikawa T., Tsuda M., Tsuchiya T. Cloning and sequencing of the melB gene encoding the melibiose permease of Salmonella typhimurium LT2. Mol Gen Genet. 1992 Jul;234(1):74–80. doi: 10.1007/BF00272347. [DOI] [PubMed] [Google Scholar]
  436. Monroe R. S., Ostrowski J., Hryniewicz M. M., Kredich N. M. In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. J Bacteriol. 1990 Dec;172(12):6919–6929. doi: 10.1128/jb.172.12.6919-6929.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  437. Morgan D. G., Macnab R. M., Francis N. R., DeRosier D. J. Domain organization of the subunit of the Salmonella typhimurium flagellar hook. J Mol Biol. 1993 Jan 5;229(1):79–84. doi: 10.1006/jmbi.1993.1009. [DOI] [PubMed] [Google Scholar]
  438. Movva N. R., Semon D., Meyer C., Kawashima E., Wingfield P., Miller J. L., Miller C. G. Cloning and nucleotide sequence of the Salmonella typhimurium pepM gene. Mol Gen Genet. 1990 Sep;223(2):345–348. doi: 10.1007/BF00265075. [DOI] [PubMed] [Google Scholar]
  439. Muday G. K., Herrmann K. M. Regulation of the Salmonella typhimurium aroF gene in Escherichia coli. J Bacteriol. 1990 May;172(5):2259–2266. doi: 10.1128/jb.172.5.2259-2266.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  440. Mustard J. A., Thliveris A. T., Mount D. W. Sequence of the Salmonella typhimurium LT2 lexA gene and its regulatory region. Nucleic Acids Res. 1992 Apr 11;20(7):1813–1813. doi: 10.1093/nar/20.7.1813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  441. Myers R. S., Townsend D., Maloy S. Dissecting the molecular mechanism of ion-solute cotransport: substrate specificity mutations in the putP gene affect the kinetics of proline transport. J Membr Biol. 1991 May;121(3):201–214. doi: 10.1007/BF01951554. [DOI] [PubMed] [Google Scholar]
  442. Müller V., Jones C. J., Kawagishi I., Aizawa S., Macnab R. M. Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J Bacteriol. 1992 Apr;174(7):2298–2304. doi: 10.1128/jb.174.7.2298-2304.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  443. Nakayama N., Arai N., Bond M. W., Kaziro Y., Arai K. Nucleotide sequence of dnaB and the primary structure of the dnaB protein from Escherichia coli. J Biol Chem. 1984 Jan 10;259(1):97–101. [PubMed] [Google Scholar]
  444. Neal B. L., Brown P. K., Reeves P. R. Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol. 1993 Nov;175(21):7115–7118. doi: 10.1128/jb.175.21.7115-7118.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Nelson S. O., Schuitema A. R., Benne R., van der Ploeg L. H., Plijter J. S., Aan F., Postma P. W. Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system. EMBO J. 1984 Jul;3(7):1587–1593. doi: 10.1002/j.1460-2075.1984.tb02015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  446. Neuhard J., Kelln R. A. A chromosomal mutation mediating increased expression of pyrE in Salmonella typhimurium is located within the proposed attenuator. Can J Microbiol. 1988 May;34(5):686–687. doi: 10.1139/m88-113. [DOI] [PubMed] [Google Scholar]
  447. Neuhard J., Kelln R. A., Stauning E. Cloning and structural characterization of the Salmonella typhimurium pyrC gene encoding dihydroorotase. Eur J Biochem. 1986 Jun 2;157(2):335–342. doi: 10.1111/j.1432-1033.1986.tb09673.x. [DOI] [PubMed] [Google Scholar]
  448. Neuhard J., Stauning E., Kelln R. A. Cloning and characterization of the pyrE gene and of PyrE::Mud1 (Ap lac) fusions from Salmonella typhimurium. Eur J Biochem. 1985 Feb 1;146(3):597–603. doi: 10.1111/j.1432-1033.1985.tb08693.x. [DOI] [PubMed] [Google Scholar]
  449. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987 Jan 30;48(2):297–310. doi: 10.1016/0092-8674(87)90433-8. [DOI] [PubMed] [Google Scholar]
  450. Ni Bhriain N., Dorman C. J., Higgins C. F. An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol. 1989 Jul;3(7):933–942. doi: 10.1111/j.1365-2958.1989.tb00243.x. [DOI] [PubMed] [Google Scholar]
  451. Nichols B. P., Miozzari G. F., van Cleemput M., Bennett G. N., Yanofsky C. Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol. 1980 Oct 5;142(4):503–517. doi: 10.1016/0022-2836(80)90260-0. [DOI] [PubMed] [Google Scholar]
  452. Nichols B. P., Yanofsky C. Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5244–5248. doi: 10.1073/pnas.76.10.5244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  453. Nikkola M., Gleason F. K., Fuchs J. A., Eklund H. Crystal structure analysis of a mutant Escherichia coli thioredoxin in which lysine 36 is replaced by glutamic acid. Biochemistry. 1993 May 18;32(19):5093–5098. doi: 10.1021/bi00070a017. [DOI] [PubMed] [Google Scholar]
  454. Nishitani J., Wilcox G. Cloning and characterization of the L-rhamnose regulon in Salmonella typhimurium LT2. Gene. 1991 Aug 30;105(1):37–42. doi: 10.1016/0378-1119(91)90511-9. [DOI] [PubMed] [Google Scholar]
  455. Nohmi T., Hakura A., Nakai Y., Watanabe M., Murayama S. Y., Sofuni T. Salmonella typhimurium has two homologous but different umuDC operons: cloning of a new umuDC-like operon (samAB) present in a 60-megadalton cryptic plasmid of S. typhimurium. J Bacteriol. 1991 Feb;173(3):1051–1063. doi: 10.1128/jb.173.3.1051-1063.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  456. Nohmi T., Yamada M., Watanabe M., Murayama S. Y., Sofuni T. Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity. J Bacteriol. 1992 Nov;174(21):6948–6955. doi: 10.1128/jb.174.21.6948-6955.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  457. Norel F., Coynault C., Miras I., Hermant D., Popoff M. Y. Cloning and expression of plasmid DNA sequences involved in Salmonella serotype typhimurium virulence. Mol Microbiol. 1989 Jun;3(6):733–743. doi: 10.1111/j.1365-2958.1989.tb00222.x. [DOI] [PubMed] [Google Scholar]
  458. Norel F., Pisano M. R., Nicoli J., Popoff M. Y. Nucleotide sequence of the plasmid-borne virulence gene mkfA encoding a 28 kDa polypeptide from Salmonella typhimurium. Res Microbiol. 1989 Mar-Apr;140(3):263–265. doi: 10.1016/0923-2508(89)90081-8. [DOI] [PubMed] [Google Scholar]
  459. Norel F., Pisano M. R., Nicoli J., Popoff M. Y. Nucleotide sequence of the plasmid-borne virulence gene mkfB from Salmonella typhimurium. Res Microbiol. 1989 Sep;140(7):455–457. doi: 10.1016/0923-2508(89)90066-1. [DOI] [PubMed] [Google Scholar]
  460. Norel F., Robbe-Saule V., Popoff M. Y., Coynault C. The putative sigma factor KatF (RpoS) is required for the transcription of the Salmonella typhimurium virulence gene spvB in Escherichia coli. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):271–276. doi: 10.1016/0378-1097(92)90039-q. [DOI] [PubMed] [Google Scholar]
  461. Nègre D., Cortay J. C., Donini P., Cozzone A. J. Relationship between guanosine tetraphosphate and accuracy of translation in Salmonella typhimurium. Biochemistry. 1989 Feb 21;28(4):1814–1819. doi: 10.1021/bi00430a058. [DOI] [PubMed] [Google Scholar]
  462. Nègre D., Cortay J. C., Old I. G., Galinier A., Richaud C., Saint Girons I., Cozzone A. J. Overproduction and characterization of the iclR gene product of Escherichia coli K-12 and comparison with that of Salmonella typhimurium LT2. Gene. 1991 Jan 2;97(1):29–37. doi: 10.1016/0378-1119(91)90006-w. [DOI] [PubMed] [Google Scholar]
  463. O'Brien K., Deno G., Ostrovsky de Spicer P., Gardner J. F., Maloy S. R. Integration host factor facilitates repression of the put operon in Salmonella typhimurium. Gene. 1992 Sep 1;118(1):13–19. doi: 10.1016/0378-1119(92)90243-i. [DOI] [PubMed] [Google Scholar]
  464. O'Byrne C. P., Dorman C. J. The spv virulence operon of Salmonella typhimurium LT2 is regulated negatively by the cyclic AMP (cAMP)-cAMP receptor protein system. J Bacteriol. 1994 Feb;176(3):905–912. doi: 10.1128/jb.176.3.905-912.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  465. O'Byrne C. P., Ní Bhriain N., Dorman C. J. The DNA supercoiling-sensitive expression of the Salmonella typhimurium his operon requires the his attenuator and is modulated by anaerobiosis and by osmolarity. Mol Microbiol. 1992 Sep;6(17):2467–2476. doi: 10.1111/j.1365-2958.1992.tb01423.x. [DOI] [PubMed] [Google Scholar]
  466. O'Connor M., Willis N. M., Bossi L., Gesteland R. F., Atkins J. F. Functional tRNAs with altered 3' ends. EMBO J. 1993 Jun;12(6):2559–2566. doi: 10.1002/j.1460-2075.1993.tb05911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  467. O'Mahony D. J., Hughes D., Thompson S., Atkins J. F. Suppression of a -1 frameshift mutation by a recessive tRNA suppressor which causes doublet decoding. J Bacteriol. 1989 Jul;171(7):3824–3830. doi: 10.1128/jb.171.7.3824-3830.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  468. O'Neal C. R., Gabriel W. M., Turk A. K., Libby S. J., Fang F. C., Spector M. P. RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol. 1994 Aug;176(15):4610–4616. doi: 10.1128/jb.176.15.4610-4616.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  469. O'Reilly C., Black G. W., Laffey R., McConnell D. J. Molecular analysis of an IS200 insertion in the gpt gene of Salmonella typhimurium LT2. J Bacteriol. 1990 Nov;172(11):6599–6601. doi: 10.1128/jb.172.11.6599-6601.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  470. O'Toole G. A., Escalante-Semerena J. C. Identification and initial characterization of the eutF locus of Salmonella typhimurium. J Bacteriol. 1991 Aug;173(16):5168–5172. doi: 10.1128/jb.173.16.5168-5172.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  471. O'Toole G. A., Escalante-Semerena J. C. cobU-dependent assimilation of nonadenosylated cobinamide in cobA mutants of Salmonella typhimurium. J Bacteriol. 1993 Oct;175(19):6328–6336. doi: 10.1128/jb.175.19.6328-6336.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  472. O'Toole G. A., Rondon M. R., Escalante-Semerena J. C. Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1993 Jun;175(11):3317–3326. doi: 10.1128/jb.175.11.3317-3326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  473. O'Toole G. A., Trzebiatowski J. R., Escalante-Semerena J. C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem. 1994 Oct 21;269(42):26503–26511. [PubMed] [Google Scholar]
  474. Ohnishi K., Hasegawa A., Matsubara K., Date T., Okada T., Kiritani K. Cloning and nucleotide sequence of the brnQ gene, the structural gene for a membrane-associated component of the LIV-II transport system for branched-chain amino acids in Salmonella typhimurium. Jpn J Genet. 1988 Aug;63(4):343–357. doi: 10.1266/jjg.63.343. [DOI] [PubMed] [Google Scholar]
  475. Ohnishi K., Kutsukake K., Suzuki H., Iino T. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet. 1990 Apr;221(2):139–147. doi: 10.1007/BF00261713. [DOI] [PubMed] [Google Scholar]
  476. Ohnishi K., Kutsukake K., Suzuki H., Lino T. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol. 1992 Nov;6(21):3149–3157. doi: 10.1111/j.1365-2958.1992.tb01771.x. [DOI] [PubMed] [Google Scholar]
  477. Ohnishi K., Nakazima A., Matsubara K., Kiritani K. Cloning and nucleotide sequences of livB and livC, the structural genes encoding binding proteins of the high-affinity branched-chain amino acid transport in Salmonella typhimurium. J Biochem. 1990 Feb;107(2):202–208. doi: 10.1093/oxfordjournals.jbchem.a123026. [DOI] [PubMed] [Google Scholar]
  478. Ohnishi K., Ohto Y., Aizawa S., Macnab R. M., Iino T. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2272–2281. doi: 10.1128/jb.176.8.2272-2281.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  479. Okazaki N., Matsuo S., Saito K., Tominaga A., Enomoto M. Conversion of the Salmonella phase 1 flagellin gene fliC to the phase 2 gene fljB on the Escherichia coli K-12 chromosome. J Bacteriol. 1993 Feb;175(3):758–766. doi: 10.1128/jb.175.3.758-766.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  480. Okino H., Isomura M., Yamaguchi S., Magariyama Y., Kudo S., Aizawa S. I. Release of flagellar filament-hook-rod complex by a Salmonella typhimurium mutant defective in the M ring of the basal body. J Bacteriol. 1989 Apr;171(4):2075–2082. doi: 10.1128/jb.171.4.2075-2082.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  481. Old I. G., Margarita D., Glass R. E., Saint Girons I. Nucleotide sequence of the metH gene of Escherichia coli K-12 and comparison with that of Salmonella typhimurium LT2. Gene. 1990 Mar 1;87(1):15–21. doi: 10.1016/0378-1119(90)90490-i. [DOI] [PubMed] [Google Scholar]
  482. Oosawa K., Ueno T., Aizawa S. Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro. J Bacteriol. 1994 Jun;176(12):3683–3691. doi: 10.1128/jb.176.12.3683-3691.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  483. Oppezzo O. J., Avanzati B., Antón D. N. Increased susceptibility to beta-lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium. Antimicrob Agents Chemother. 1991 Jun;35(6):1203–1207. doi: 10.1128/aac.35.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  484. Ostrovsky de Spicer P., Maloy S. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4295–4298. doi: 10.1073/pnas.90.9.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  485. Ostrovsky de Spicer P., O'Brien K., Maloy S. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J Bacteriol. 1991 Jan;173(1):211–219. doi: 10.1128/jb.173.1.211-219.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  486. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed] [Google Scholar]
  487. Ostrowski J., Jagura-Burdzy G., Kredich N. M. DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J Biol Chem. 1987 May 5;262(13):5999–6005. [PubMed] [Google Scholar]
  488. Ostrowski J., Kredich N. M. In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J Bacteriol. 1990 Feb;172(2):779–785. doi: 10.1128/jb.172.2.779-785.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  489. Ostrowski J., Kredich N. M. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine. J Bacteriol. 1989 Jan;171(1):130–140. doi: 10.1128/jb.171.1.130-140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  490. Ostrowski J., Kredich N. M. Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter. J Bacteriol. 1991 Apr;173(7):2212–2218. doi: 10.1128/jb.173.7.2212-2218.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  491. Ostrowski J., Wu J. Y., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J Biol Chem. 1989 Sep 15;264(26):15726–15737. [PubMed] [Google Scholar]
  492. Overdier D. G., Csonka L. N. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3140–3144. doi: 10.1073/pnas.89.7.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  493. Overdier D. G., Olson E. R., Erickson B. D., Ederer M. M., Csonka L. N. Nucleotide sequence of the transcriptional control region of the osmotically regulated proU operon of Salmonella typhimurium and identification of the 5' endpoint of the proU mRNA. J Bacteriol. 1989 Sep;171(9):4694–4706. doi: 10.1128/jb.171.9.4694-4706.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  494. Owen-Hughes T. A., Pavitt G. D., Santos D. S., Sidebotham J. M., Hulton C. S., Hinton J. C., Higgins C. F. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell. 1992 Oct 16;71(2):255–265. doi: 10.1016/0092-8674(92)90354-f. [DOI] [PubMed] [Google Scholar]
  495. Pace J., Hayman M. J., Galán J. E. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell. 1993 Feb 26;72(4):505–514. doi: 10.1016/0092-8674(93)90070-7. [DOI] [PubMed] [Google Scholar]
  496. Pai S. R., Upshaw Y., Singh S. P. Characterization of monoclonal antibodies to the outer membrane protein (OmpD) of Salmonella typhimurium. Can J Microbiol. 1992 Nov;38(11):1102–1107. doi: 10.1139/m92-181. [DOI] [PubMed] [Google Scholar]
  497. Papp-Szabò E., Firtel M., Josephy P. D. Comparison of the sensitivities of Salmonella typhimurium oxyR and katG mutants to killing by human neutrophils. Infect Immun. 1994 Jul;62(7):2662–2668. doi: 10.1128/iai.62.7.2662-2668.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  498. Park U. E., Olivera B. M., Hughes K. T., Roth J. R., Hillyard D. R. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol. 1989 Apr;171(4):2173–2180. doi: 10.1128/jb.171.4.2173-2180.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  499. Park Y. M., Stauffer G. V. DNA sequence of the metC gene and its flanking regions from Salmonella typhimurium LT2 and homology with the corresponding sequence of Escherichia coli. Mol Gen Genet. 1989 Mar;216(1):164–169. doi: 10.1007/BF00332246. [DOI] [PubMed] [Google Scholar]
  500. Park Y. M., Stauffer G. V. Salmonella typhimurium metC operator-constitutive mutations. FEMS Microbiol Lett. 1989 Jul 15;51(1):137–141. doi: 10.1016/0378-1097(89)90496-5. [DOI] [PubMed] [Google Scholar]
  501. Parra-Lopez C., Baer M. T., Groisman E. A. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 1993 Nov;12(11):4053–4062. doi: 10.1002/j.1460-2075.1993.tb06089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  502. Parra-Lopez C., Lin R., Aspedon A., Groisman E. A. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J. 1994 Sep 1;13(17):3964–3972. doi: 10.1002/j.1460-2075.1994.tb06712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  503. Paton E. B., Woodmaska M. I., Kroupskaya I. V., Zhyvoloup A. N., Matsuka G. Kh. Evidence for the ability of L10 ribosomal proteins of Salmonella typhimurium and Klebsiella pneumoniae to regulate rplJL gene expression in Escherichia coli. FEBS Lett. 1990 Jun 4;265(1-2):129–132. doi: 10.1016/0014-5793(90)80901-t. [DOI] [PubMed] [Google Scholar]
  504. Paton E. B., Zolotukhin S. B., Woodmaska M. I., Kroupskaya I. V., Zhyvoloup A. N. The nucleotide sequence of gene rpIJ encoding ribosomal protein L10 of Salmonella typhimurium. Nucleic Acids Res. 1990 May 11;18(9):2824–2824. doi: 10.1093/nar/18.9.2824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  505. Pearce S. R., Mimmack M. L., Gallagher M. P., Gileadi U., Hyde S. C., Higgins C. F. Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium. Mol Microbiol. 1992 Jan;6(1):47–57. doi: 10.1111/j.1365-2958.1992.tb00836.x. [DOI] [PubMed] [Google Scholar]
  506. Persson B. C., Björk G. R. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J Bacteriol. 1993 Dec;175(24):7776–7785. doi: 10.1128/jb.175.24.7776-7785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  507. Pflugrath J. W., Quiocho F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature. 1985 Mar 21;314(6008):257–260. doi: 10.1038/314257a0. [DOI] [PubMed] [Google Scholar]
  508. Pflugrath J. W., Quiocho F. A. The 2 A resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J Mol Biol. 1988 Mar 5;200(1):163–180. doi: 10.1016/0022-2836(88)90341-5. [DOI] [PubMed] [Google Scholar]
  509. Piszkiewicz D., Tilley B. E., Rand-Meir T., Parsons S. M. Amino acid sequence of ATP phosphoribosyltransferase of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1589–1592. doi: 10.1073/pnas.76.4.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  510. Plamann L. S., Stauffer G. V. Nucleotide sequence of the Salmonella typhimurium metR gene and the metR-metE control region. J Bacteriol. 1987 Sep;169(9):3932–3937. doi: 10.1128/jb.169.9.3932-3937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  511. Plamann L. S., Urbanowski M. L., Stauffer G. V. Salmonella typhimurium metE operator-constitutive mutations. Gene. 1988 Dec 15;73(1):201–208. doi: 10.1016/0378-1119(88)90326-5. [DOI] [PubMed] [Google Scholar]
  512. Popham D. L., Szeto D., Keener J., Kustu S. Function of a bacterial activator protein that binds to transcriptional enhancers. Science. 1989 Feb 3;243(4891):629–635. doi: 10.1126/science.2563595. [DOI] [PubMed] [Google Scholar]
  513. Popham D., Keener J., Kustu S. Purification of the alternative sigma factor, sigma 54, from Salmonella typhimurium and characterization of sigma 54-holoenzyme. J Biol Chem. 1991 Oct 15;266(29):19510–19518. [PubMed] [Google Scholar]
  514. Post D. A., Hove-Jensen B., Switzer R. L. Characterization of the hemA-prs region of the Escherichia coli and Salmonella typhimurium chromosomes: identification of two open reading frames and implications for prs expression. J Gen Microbiol. 1993 Feb;139(2):259–266. doi: 10.1099/00221287-139-2-259. [DOI] [PubMed] [Google Scholar]
  515. Powers D. A., Roseman S. The primary structure of Salmonella typhimurium HPr, a phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. A correction. J Biol Chem. 1984 Dec 25;259(24):15212–15214. [PubMed] [Google Scholar]
  516. Prasad R., Chopra A. K., Chary P., Peterson J. W. Expression and characterization of the cloned Salmonella typhimurium enterotoxin. Microb Pathog. 1992 Aug;13(2):109–121. doi: 10.1016/0882-4010(92)90071-u. [DOI] [PubMed] [Google Scholar]
  517. Prasad R., Chopra A. K., Peterson J. W., Pericas R., Houston C. W. Biological and immunological characterization of a cloned cholera toxin-like enterotoxin from Salmonella typhimurium. Microb Pathog. 1990 Nov;9(5):315–329. doi: 10.1016/0882-4010(90)90066-y. [DOI] [PubMed] [Google Scholar]
  518. Prival M. J., Cebula T. A. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics. 1992 Oct;132(2):303–310. doi: 10.1093/genetics/132.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  519. Prossnitz E. Determination of a region of the HisJ binding protein involved in the recognition of the membrane complex of the histidine transport system of Salmonella typhimurium. J Biol Chem. 1991 May 25;266(15):9673–9677. [PubMed] [Google Scholar]
  520. Pulkkinen W. S., Miller S. I. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J Bacteriol. 1991 Jan;173(1):86–93. doi: 10.1128/jb.173.1.86-93.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  521. Raha M., Kawagishi I., Müller V., Kihara M., Macnab R. M. Escherichia coli produces a cytoplasmic alpha-amylase, AmyA. J Bacteriol. 1992 Oct;174(20):6644–6652. doi: 10.1128/jb.174.20.6644-6652.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  522. Raha M., Kihara M., Kawagishi I., Macnab R. M. Organization of the Escherichia coli and Salmonella typhimurium chromosomes between flagellar regions IIIa and IIIb, including a large non-coding region. J Gen Microbiol. 1993 Jul;139(7):1401–1407. doi: 10.1099/00221287-139-7-1401. [DOI] [PubMed] [Google Scholar]
  523. Raha M., Sockett H., Macnab R. M. Characterization of the fliL gene in the flagellar regulon of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2308–2311. doi: 10.1128/jb.176.8.2308-2311.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  524. Rayssiguier C., Dohet C., Radman M. Interspecific recombination between Escherichia coli and Salmonella typhimurium occurs by the RecABCD pathway. Biochimie. 1991 Apr;73(4):371–374. doi: 10.1016/0300-9084(91)90103-8. [DOI] [PubMed] [Google Scholar]
  525. Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
  526. Reeves P., Stevenson G. Cloning and nucleotide sequence of the Salmonella typhimurium LT2 gnd gene and its homology with the corresponding sequence of Escherichia coli K12. Mol Gen Genet. 1989 May;217(1):182–184. doi: 10.1007/BF00330960. [DOI] [PubMed] [Google Scholar]
  527. Rhen M., Sukupolvi S. The role of the traT gene of the Salmonella typhimurium virulence plasmid for serum resistance and growth within liver macrophages. Microb Pathog. 1988 Oct;5(4):275–285. doi: 10.1016/0882-4010(88)90100-3. [DOI] [PubMed] [Google Scholar]
  528. Ricca E., Calvo J. M. The nucleotide sequence of leuA from Salmonella typhimurium. Nucleic Acids Res. 1990 Mar 11;18(5):1290–1290. doi: 10.1093/nar/18.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  529. Ricca E., Lago C. T., Sacco M., De Felice M. Absence of acetohydroxy acid synthase III in Salmonella typhimurium is due to early termination of translation within the ilvl gene. Mol Microbiol. 1991 Jul;5(7):1741–1743. doi: 10.1111/j.1365-2958.1991.tb01923.x. [DOI] [PubMed] [Google Scholar]
  530. Richardson S. M., Higgins C. F., Lilley D. M. DNA supercoiling and the leu-500 promoter mutation of Salmonella typhimurium. EMBO J. 1988 Jun;7(6):1863–1869. doi: 10.1002/j.1460-2075.1988.tb03019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  531. Richarme G., el Yaagoubi A., Kohiyama M. The MglA component of the binding protein-dependent galactose transport system of Salmonella typhimurium is a galactose-stimulated ATPase. J Biol Chem. 1993 May 5;268(13):9473–9477. [PubMed] [Google Scholar]
  532. Richter-Dahlfors A. A., Andersson D. I. Cobalamin (vitamin B12) repression of the Cob operon in Salmonella typhimurium requires sequences within the leader and the first translated open reading frame. Mol Microbiol. 1992 Mar;6(6):743–749. doi: 10.1111/j.1365-2958.1992.tb01524.x. [DOI] [PubMed] [Google Scholar]
  533. Rioux C. R., Friedrich M. J., Kadner R. J. Genes on the 90-kilobase plasmid of Salmonella typhimurium confer low-affinity cobalamin transport: relationship to fimbria biosynthesis genes. J Bacteriol. 1990 Nov;172(11):6217–6222. doi: 10.1128/jb.172.11.6217-6222.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  534. Rioux C. R., Kadner R. J. Two outer membrane transport systems for vitamin B12 in Salmonella typhimurium. J Bacteriol. 1989 Jun;171(6):2986–2993. doi: 10.1128/jb.171.6.2986-2993.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  535. Rivera M., Bertasso A., McCaffrey C., Georgopapadakou N. H. Porins and lipopolysaccharide of Escherichia coli ATCC 25922 and isogenic rough mutants. FEMS Microbiol Lett. 1993 Apr 1;108(2):183–187. doi: 10.1111/j.1574-6968.1993.tb06096.x. [DOI] [PubMed] [Google Scholar]
  536. Robison K., Gilbert W., Church G. M. Large scale bacterial gene discovery by similarity search. Nat Genet. 1994 Jun;7(2):205–214. doi: 10.1038/ng0694-205. [DOI] [PubMed] [Google Scholar]
  537. Roland K. L., Esther C. R., Spitznagel J. K. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J Bacteriol. 1994 Jun;176(12):3589–3597. doi: 10.1128/jb.176.12.3589-3597.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  538. Roland K. L., Martin L. E., Esther C. R., Spitznagel J. K. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol. 1993 Jul;175(13):4154–4164. doi: 10.1128/jb.175.13.4154-4164.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  539. Romana L. K., Santiago F. S., Reeves P. R. High level expression and purification of dthymidine diphospho-D-glucose 4,6-dehydratase (rfbB) from Salmonella serovar typhimurium LT2. Biochem Biophys Res Commun. 1991 Jan 31;174(2):846–852. doi: 10.1016/0006-291x(91)91495-x. [DOI] [PubMed] [Google Scholar]
  540. Romeo T., Moore J. Comparison of the 5' flanking regions of the Salmonella typhimurium and Escherichia coli glgC genes, encoding ADP glucose pyrophosphorylases. Nucleic Acids Res. 1991 Jun 25;19(12):3452–3452. doi: 10.1093/nar/19.12.3452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  541. Rondon M. R., Escalante-Semerena J. C. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol. 1992 Apr;174(7):2267–2272. doi: 10.1128/jb.174.7.2267-2272.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  542. Roof D. M., Roth J. R. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J Bacteriol. 1992 Oct;174(20):6634–6643. doi: 10.1128/jb.174.20.6634-6643.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  543. Roof D. M., Roth J. R. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J Bacteriol. 1989 Jun;171(6):3316–3323. doi: 10.1128/jb.171.6.3316-3323.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  544. Roseman S., Meadow N. D. Signal transduction by the bacterial phosphotransferase system. Diauxie and the crr gene (J. Monod revisited). J Biol Chem. 1990 Feb 25;265(6):2993–2996. [PubMed] [Google Scholar]
  545. Rosenthal E. R., Calvo J. M. The nucleotide sequence of leuC from Salmonella typhimurium. Nucleic Acids Res. 1990 May 25;18(10):3072–3072. doi: 10.1093/nar/18.10.3072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  546. Roth J. R., Lawrence J. G., Rubenfield M., Kieffer-Higgins S., Church G. M. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1993 Jun;175(11):3303–3316. doi: 10.1128/jb.175.11.3303-3316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  547. Roy A. M., Coleman J. Mutations in firA, encoding the second acyltransferase in lipopolysaccharide biosynthesis, affect multiple steps in lipopolysaccharide biosynthesis. J Bacteriol. 1994 Mar;176(6):1639–1646. doi: 10.1128/jb.176.6.1639-1646.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  548. Rudd K. E., Menzel R. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc Natl Acad Sci U S A. 1987 Jan;84(2):517–521. doi: 10.1073/pnas.84.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  549. Ruijter G. J., Postma P. W., van Dam K. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. J Bacteriol. 1990 Sep;172(9):4783–4789. doi: 10.1128/jb.172.9.4783-4789.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  550. Ruijter G. J., Postma P. W., van Dam K. Energetics of glucose uptake in a Salmonella typhimurium mutant containing uncoupled enzyme IIGlc. Arch Microbiol. 1991;155(3):234–237. doi: 10.1007/BF00252206. [DOI] [PubMed] [Google Scholar]
  551. Russo A. F., Koshland D. E., Jr Identification of the tip-encoded receptor in bacterial sensing. J Bacteriol. 1986 Jan;165(1):276–282. doi: 10.1128/jb.165.1.276-282.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  552. Russo A. F., Koshland D. E., Jr Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science. 1983 Jun 3;220(4601):1016–1020. doi: 10.1126/science.6302843. [DOI] [PubMed] [Google Scholar]
  553. Sanderson K. E., Kadam S. K., MacLachlan P. R. Derepression of F factor function in Salmonella typhimurium. Can J Microbiol. 1983 Sep;29(9):1205–1212. doi: 10.1139/m83-184. [DOI] [PubMed] [Google Scholar]
  554. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. doi: 10.1128/mr.52.4.485-532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  555. Sanderson K. E., Sciore P., Liu S. L., Hessel A. Location of IS200 on the genomic cleavage map of Salmonella typhimurium LT2. J Bacteriol. 1993 Dec;175(23):7624–7628. doi: 10.1128/jb.175.23.7624-7628.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  556. Sandler S. J., Chackerian B., Li J. T., Clark A. J. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop. Nucleic Acids Res. 1992 Feb 25;20(4):839–845. doi: 10.1093/nar/20.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  557. Sankaran K., Wu H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem. 1994 Aug 5;269(31):19701–19706. [PubMed] [Google Scholar]
  558. Scapin G., Sacchettini J. C., Dessen A., Bhatia M., Grubmeyer C. Primary structure and crystallization of orotate phosphoribosyltransferase from Salmonella typhimurium. J Mol Biol. 1993 Apr 20;230(4):1304–1308. doi: 10.1006/jmbi.1993.1244. [DOI] [PubMed] [Google Scholar]
  559. Schafer R., Eisenstein T. K. Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun. 1992 Mar;60(3):791–797. doi: 10.1128/iai.60.3.791-797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  560. Schleibinger H., Leberl C., Rüden H. Nitrierte polyzyklische aromatische Kohlenwasserstoffe (Nitro-PAH) im Schwebestaub der Aussenluft. 2. Mitteilung: Vergleich der Mutagenität von Nitro-PAH und Luftstaubextrakten im Ames-, SOS-Reparatur-Induktions- und SCE-Test. Zentralbl Hyg Umweltmed. 1989 Aug;188(5):421–438. [PubMed] [Google Scholar]
  561. Schmid M. B. A locus affecting nucleoid segregation in Salmonella typhimurium. J Bacteriol. 1990 Sep;172(9):5416–5424. doi: 10.1128/jb.172.9.5416-5424.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  562. Schmid M. B., Kapur N., Isaacson D. R., Lindroos P., Sharpe C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics. 1989 Dec;123(4):625–633. doi: 10.1093/genetics/123.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  563. Schmid M. B., Sawitzke J. A. Multiple bacterial topoisomerases: specialization or redundancy? Bioessays. 1993 Jul;15(7):445–449. doi: 10.1002/bies.950150703. [DOI] [PubMed] [Google Scholar]
  564. Schmitt C. K., Darnell S. C., Tesh V. L., Stocker B. A., O'Brien A. D. Mutation of flgM attenuates virulence of Salmonella typhimurium, and mutation of fliA represses the attenuated phenotype. J Bacteriol. 1994 Jan;176(2):368–377. doi: 10.1128/jb.176.2.368-377.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  565. Schmitz G., Nikaido K., Ames G. F. Regulation of a transport operon promoter in Salmonella typhimurium: identification of sites essential for nitrogen regulation. Mol Gen Genet. 1988 Dec;215(1):107–117. doi: 10.1007/BF00331311. [DOI] [PubMed] [Google Scholar]
  566. Schnaitman C. A., Klena J. D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev. 1993 Sep;57(3):655–682. doi: 10.1128/mr.57.3.655-682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  567. Schnaitman C. A., Parker C. T., Klena J. D., Pradel E. L., Pearson N. B., Sanderson K. E., MacClachlan P. R. Physical maps of the rfa loci of Escherichia coli K-12 and Salmonella typhimurium. J Bacteriol. 1991 Dec;173(23):7410–7411. doi: 10.1128/jb.173.23.7410-7411.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  568. Schneider E., Francoz E., Dassa E. Completion of the nucleotide sequence of the 'maltose B' region in Salmonella typhimurium: the high conservation of the malM gene suggests a selected physiological role for its product. Biochim Biophys Acta. 1992 Jan 6;1129(2):223–227. doi: 10.1016/0167-4781(92)90492-i. [DOI] [PubMed] [Google Scholar]
  569. Schneider E., Walter C. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium. Mol Microbiol. 1991 Jun;5(6):1375–1383. doi: 10.1111/j.1365-2958.1991.tb00784.x. [DOI] [PubMed] [Google Scholar]
  570. Schneider W. P., Nichols B. P., Yanofsky C. Procedure for production of hybrid genes and proteins and its use in assessing significance of amino acid differences in homologous tryptophan synthetase alpha polypeptides. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2169–2173. doi: 10.1073/pnas.78.4.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  571. Schnierow B. J., Yamada M., Saier M. H., Jr Partial nucleotide sequence of the pts operon in Salmonella typhimurium: comparative analyses in five bacterial genera. Mol Microbiol. 1989 Jan;3(1):113–118. doi: 10.1111/j.1365-2958.1989.tb00110.x. [DOI] [PubMed] [Google Scholar]
  572. Schroeder C. J., Dobrogosz W. J. Cloning and DNA sequence analysis of the wild-type and mutant cyclic AMP receptor protein genes from Salmonella typhimurium. J Bacteriol. 1986 Aug;167(2):616–622. doi: 10.1128/jb.167.2.616-622.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  573. Sedgwick S. G., Ho C., Woodgate R. Mutagenic DNA repair in enterobacteria. J Bacteriol. 1991 Sep;173(18):5604–5611. doi: 10.1128/jb.173.18.5604-5611.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  574. Servos S., Chatfield S., Hone D., Levine M., Dimitriadis G., Pickard D., Dougan G., Fairweather N., Charles I. Molecular cloning and characterization of the aroD gene encoding 3-dehydroquinase from Salmonella typhi. J Gen Microbiol. 1991 Jan;137(1):147–152. doi: 10.1099/00221287-137-1-147. [DOI] [PubMed] [Google Scholar]
  575. Shand R. F., Blum P. H., Holzschu D. L., Urdea M. S., Artz S. W. Mutational analysis of the histidine operon promoter of Salmonella typhimurium. J Bacteriol. 1989 Nov;171(11):6330–6337. doi: 10.1128/jb.171.11.6330-6337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  576. Shand R. F., Blum P. H., Mueller R. D., Riggs D. L., Artz S. W. Correlation between histidine operon expression and guanosine 5'-diphosphate-3'-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium. J Bacteriol. 1989 Feb;171(2):737–743. doi: 10.1128/jb.171.2.737-743.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  577. Shanmugam K. T., Stewart V., Gunsalus R. P., Boxer D. H., Cole J. A., Chippaux M., DeMoss J. A., Giordano G., Lin E. C., Rajagopalan K. V. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium. Mol Microbiol. 1992 Nov;6(22):3452–3454. doi: 10.1111/j.1365-2958.1992.tb02215.x. [DOI] [PubMed] [Google Scholar]
  578. Sharp P. M., Kelleher J. E., Daniel A. S., Cowan G. M., Murray N. E. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9836–9840. doi: 10.1073/pnas.89.20.9836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  579. Sharp P. M., Shields D. C., Wolfe K. H., Li W. H. Chromosomal location and evolutionary rate variation in enterobacterial genes. Science. 1989 Nov 10;246(4931):808–810. doi: 10.1126/science.2683084. [DOI] [PubMed] [Google Scholar]
  580. Shaw N. A., Ayling P. D. Cloning of high-affinity methionine transport genes from Salmonella typhimurium. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):127–131. doi: 10.1016/0378-1097(91)90145-z. [DOI] [PubMed] [Google Scholar]
  581. Sheppard D. E., Roth J. R. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium. J Bacteriol. 1994 Mar;176(5):1287–1296. doi: 10.1128/jb.176.5.1287-1296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  582. Shimamoto T., Izawa H., Daimon H., Ishiguro N., Shinagawa M., Sakano Y., Tsuda M., Tsuchiya T. Cloning and nucleotide sequence of the gene (citA) encoding a citrate carrier from Salmonella typhimurium. J Biochem. 1991 Jul;110(1):22–28. doi: 10.1093/oxfordjournals.jbchem.a123537. [DOI] [PubMed] [Google Scholar]
  583. Shiuan D., Campbell A. Transcriptional regulation and gene arrangement of Escherichia coli, Citrobacter freundii and Salmonella typhimurium biotin operons. Gene. 1988 Jul 30;67(2):203–211. doi: 10.1016/0378-1119(88)90397-6. [DOI] [PubMed] [Google Scholar]
  584. Silverman M., Zieg J., Mandel G., Simon M. Analysis of the functional components of the phase variation system. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):17–26. doi: 10.1101/sqb.1981.045.01.005. [DOI] [PubMed] [Google Scholar]
  585. Simms S. A., Cornman E. W., Mottonen J., Stock J. Active site of the enzyme which demethylates receptors during bacterial chemotaxis. J Biol Chem. 1987 Jan 5;262(1):29–31. [PubMed] [Google Scholar]
  586. Simms S. A., Keane M. G., Stock J. Multiple forms of the CheB methylesterase in bacterial chemosensing. J Biol Chem. 1985 Aug 25;260(18):10161–10168. [PubMed] [Google Scholar]
  587. Simms S. A., Stock A. M., Stock J. B. Purification and characterization of the S-adenosylmethionine:glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria. J Biol Chem. 1987 Jun 25;262(18):8537–8543. [PubMed] [Google Scholar]
  588. Sirisena D. M., Brozek K. A., MacLachlan P. R., Sanderson K. E., Raetz C. R. The rfaC gene of Salmonella typhimurium. Cloning, sequencing, and enzymatic function in heptose transfer to lipopolysaccharide. J Biol Chem. 1992 Sep 15;267(26):18874–18884. [PubMed] [Google Scholar]
  589. Sirisena D. M., MacLachlan P. R., Liu S. L., Hessel A., Sanderson K. E. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2379–2385. doi: 10.1128/jb.176.8.2379-2385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  590. Skovgaard O., Hansen F. G. Comparison of dnaA nucleotide sequences of Escherichia coli, Salmonella typhimurium, and Serratia marcescens. J Bacteriol. 1987 Sep;169(9):3976–3981. doi: 10.1128/jb.169.9.3976-3981.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  591. Skurnik M., Toivanen P. Intervening sequences (IVSs) in the 23S ribosomal RNA genes of pathogenic Yersinia enterocolitica strains. The IVSs in Y. enterocolitica and Salmonella typhimurium have a common origin. Mol Microbiol. 1991 Mar;5(3):585–593. doi: 10.1111/j.1365-2958.1991.tb00729.x. [DOI] [PubMed] [Google Scholar]
  592. Slater S. C., Maurer R. Requirements for bypass of UV-induced lesions in single-stranded DNA of bacteriophage phi X174 in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1251–1255. doi: 10.1073/pnas.88.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  593. Sluka J. P., Horvath S. J., Glasgow A. C., Simon M. I., Dervan P. B. Importance of minor-groove contacts for recognition of DNA by the binding domain of Hin recombinase. Biochemistry. 1990 Jul 17;29(28):6551–6561. doi: 10.1021/bi00480a002. [DOI] [PubMed] [Google Scholar]
  594. Smith C. M., Koch W. H., Franklin S. B., Foster P. L., Cebula T. A., Eisenstadt E. Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon. J Bacteriol. 1990 Sep;172(9):4964–4978. doi: 10.1128/jb.172.9.4964-4978.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  595. Smith H. R., Humphreys G. O., Grindley N. D., Grindley J. N., Anderson E. S. Molecular studies of an fi+ plasmid from strains of Salmonella typhimurium. Mol Gen Genet. 1973 Nov 2;126(2):143–151. doi: 10.1007/BF00330989. [DOI] [PubMed] [Google Scholar]
  596. Smith N. H., Beltran P., Selander R. K. Recombination of Salmonella phase 1 flagellin genes generates new serovars. J Bacteriol. 1990 May;172(5):2209–2216. doi: 10.1128/jb.172.5.2209-2216.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  597. Smith N. H., Selander R. K. Sequence invariance of the antigen-coding central region of the phase 1 flagellar filament gene (fliC) among strains of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):603–609. doi: 10.1128/jb.172.2.603-609.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  598. Smith R. L., Banks J. L., Snavely M. D., Maguire M. E. Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem. 1993 Jul 5;268(19):14071–14080. [PubMed] [Google Scholar]
  599. Smith R. L., Pelley J. W., Jeter R. M. Characterization of lip expression in Salmonella typhimurium: analysis of lip::lac operon fusions. J Gen Microbiol. 1991 Oct;137(10):2307–2312. doi: 10.1099/00221287-137-10-2307. [DOI] [PubMed] [Google Scholar]
  600. Smyer J. R., Jeter R. M. Characterization of phosphoenolpyruvate synthase mutants in Salmonella typhimurium. Arch Microbiol. 1989;153(1):26–32. doi: 10.1007/BF00277536. [DOI] [PubMed] [Google Scholar]
  601. Snavely M. D., Florer J. B., Miller C. G., Maguire M. E. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol. 1989 Sep;171(9):4761–4766. doi: 10.1128/jb.171.9.4761-4766.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  602. Snavely M. D., Florer J. B., Miller C. G., Maguire M. E. Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems. J Bacteriol. 1989 Sep;171(9):4752–4760. doi: 10.1128/jb.171.9.4752-4760.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  603. Snavely M. D., Gravina S. A., Cheung T. T., Miller C. G., Maguire M. E. Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression. J Biol Chem. 1991 Jan 15;266(2):824–829. [PubMed] [Google Scholar]
  604. Snavely M. D., Miller C. G., Maguire M. E. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem. 1991 Jan 15;266(2):815–823. [PubMed] [Google Scholar]
  605. Sockett H., Yamaguchi S., Kihara M., Irikura V. M., Macnab R. M. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J Bacteriol. 1992 Feb;174(3):793–806. doi: 10.1128/jb.174.3.793-806.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  606. Sofia H. J., Burland V., Daniels D. L., Plunkett G., 3rd, Blattner F. R. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576–2586. doi: 10.1093/nar/22.13.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  607. Sohel I., Puente J. L., Murray W. J., Vuopio-Varkila J., Schoolnik G. K. Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol. 1993 Feb;7(4):563–575. doi: 10.1111/j.1365-2958.1993.tb01147.x. [DOI] [PubMed] [Google Scholar]
  608. Sonti R. V., Keating D. H., Roth J. R. Lethal transposition of Mud phages in Rec- strains of Salmonella typhimurium. Genetics. 1993 Jan;133(1):17–28. doi: 10.1093/genetics/133.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  609. Spector M. P., Aliabadi Z., Gonzalez T., Foster J. W. Global control in Salmonella typhimurium: two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins. J Bacteriol. 1986 Oct;168(1):420–424. doi: 10.1128/jb.168.1.420-424.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  610. Spector M. P., Cubitt C. L. Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation-survival. Mol Microbiol. 1992 Jun;6(11):1467–1476. doi: 10.1111/j.1365-2958.1992.tb00867.x. [DOI] [PubMed] [Google Scholar]
  611. Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. doi: 10.1016/0014-5793(93)80438-z. [DOI] [PubMed] [Google Scholar]
  612. Spierings G., Elders R., van Lith B., Hofstra H., Tommassen J. Characterization of the Salmonella typhimurium phoE gene and development of Salmonella-specific DNA probes. Gene. 1992 Dec 1;122(1):45–52. doi: 10.1016/0378-1119(92)90030-s. [DOI] [PubMed] [Google Scholar]
  613. Springer A. L., Schmid M. B. Molecular characterization of the Salmonella typhimurium parE gene. Nucleic Acids Res. 1993 Apr 25;21(8):1805–1809. doi: 10.1093/nar/21.8.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  614. Sroga G. E., Nemoto F., Kuchino Y., Björk G. R. Insertion (sufB) in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNA(Pro)2 from Salmonella typhimurium induces suppression of frameshift mutations. Nucleic Acids Res. 1992 Jul 11;20(13):3463–3469. doi: 10.1093/nar/20.13.3463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  615. Stalker D. M., Hiatt W. R., Comai L. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem. 1985 Apr 25;260(8):4724–4728. [PubMed] [Google Scholar]
  616. Stauffer G. V., Stauffer L. T. Cloning and nucleotide sequence of the Salmonella typhimurium LT2 metF gene and its homology with the corresponding sequence of Escherichia coli. Mol Gen Genet. 1988 May;212(2):246–251. doi: 10.1007/BF00334692. [DOI] [PubMed] [Google Scholar]
  617. Stauffer G. V., Stauffer L. T., Plamann M. D. The Salmonella typhimurium glycine cleavage enzyme system. Mol Gen Genet. 1989 Dec;220(1):154–156. doi: 10.1007/BF00260870. [DOI] [PubMed] [Google Scholar]
  618. Stauffer G. V., Stauffer L. T. Salmonella typhimurium LT2 metF operator mutations. Mol Gen Genet. 1988 Sep;214(1):32–36. doi: 10.1007/BF00340175. [DOI] [PubMed] [Google Scholar]
  619. Steiert J. G., Urbanowski M. L., Stauffer L. T., Plamann M. D., Stauffer G. V. Nucleotide sequence of the Salmonella typhimurium glyA gene. DNA Seq. 1990;1(2):107–113. doi: 10.3109/10425179009016038. [DOI] [PubMed] [Google Scholar]
  620. Stevenson G., Lee S. J., Romana L. K., Reeves P. R. The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster. Mol Gen Genet. 1991 Jun;227(2):173–180. doi: 10.1007/BF00259668. [DOI] [PubMed] [Google Scholar]
  621. Stewart V., Lin J. T., Berg B. L. Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12. J Bacteriol. 1991 Jul;173(14):4417–4423. doi: 10.1128/jb.173.14.4417-4423.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  622. Stewart V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev. 1988 Jun;52(2):190–232. doi: 10.1128/mr.52.2.190-232.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  623. Stinavage P. S., Martin L. E., Spitznagel J. K. A 59 kiloDalton outer membrane protein of Salmonella typhimurium protects against oxidative intraleukocytic killing due to human neutrophils. Mol Microbiol. 1990 Feb;4(2):283–293. doi: 10.1111/j.1365-2958.1990.tb00595.x. [DOI] [PubMed] [Google Scholar]
  624. Stirling D. A., Hulton C. S., Waddell L., Park S. F., Stewart G. S., Booth I. R., Higgins C. F. Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Mol Microbiol. 1989 Aug;3(8):1025–1038. doi: 10.1111/j.1365-2958.1989.tb00253.x. [DOI] [PubMed] [Google Scholar]
  625. Stock A. M., Martinez-Hackert E., Rasmussen B. F., West A. H., Stock J. B., Ringe D., Petsko G. A. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry. 1993 Dec 14;32(49):13375–13380. doi: 10.1021/bi00212a001. [DOI] [PubMed] [Google Scholar]
  626. Stock A. M., Mottonen J. M., Stock J. B., Schutt C. E. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature. 1989 Feb 23;337(6209):745–749. doi: 10.1038/337745a0. [DOI] [PubMed] [Google Scholar]
  627. Stock A. M., Stock J. B. Purification and characterization of the CheZ protein of bacterial chemotaxis. J Bacteriol. 1987 Jul;169(7):3301–3311. doi: 10.1128/jb.169.7.3301-3311.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  628. Stock A. M., Wylie D. C., Mottonen J. M., Lupas A. N., Ninfa E. G., Ninfa A. J., Schutt C. E., Stock J. B. Phosphoproteins involved in bacterial signal transduction. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):49–57. doi: 10.1101/sqb.1988.053.01.009. [DOI] [PubMed] [Google Scholar]
  629. Stock A., Chen T., Welsh D., Stock J. CheA protein, a central regulator of bacterial chemotaxis, belongs to a family of proteins that control gene expression in response to changing environmental conditions. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1403–1407. doi: 10.1073/pnas.85.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  630. Stock A., Koshland D. E., Jr, Stock J. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7989–7993. doi: 10.1073/pnas.82.23.7989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  631. Stock A., Schaeffer E., Koshland D. E., Jr, Stock J. A second type of protein methylation reaction in bacterial chemotaxis. J Biol Chem. 1987 Jun 15;262(17):8011–8014. [PubMed] [Google Scholar]
  632. Stock J. B., Lukat G. S., Stock A. M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem. 1991;20:109–136. doi: 10.1146/annurev.bb.20.060191.000545. [DOI] [PubMed] [Google Scholar]
  633. Storz G., Jacobson F. S., Tartaglia L. A., Morgan R. W., Silveira L. A., Ames B. N. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol. 1989 Apr;171(4):2049–2055. doi: 10.1128/jb.171.4.2049-2055.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  634. Storz G., Tartaglia L. A., Ames B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990 Apr 13;248(4952):189–194. doi: 10.1126/science.2183352. [DOI] [PubMed] [Google Scholar]
  635. Storz G., Toledano M. B. Regulation of bacterial gene expression in response to oxidative stress. Methods Enzymol. 1994;236:196–207. doi: 10.1016/0076-6879(94)36017-0. [DOI] [PubMed] [Google Scholar]
  636. Strugnell R. A., Maskell D., Fairweather N., Pickard D., Cockayne A., Penn C., Dougan G. Stable expression of foreign antigens from the chromosome of Salmonella typhimurium vaccine strains. Gene. 1990 Mar 30;88(1):57–63. doi: 10.1016/0378-1119(90)90059-z. [DOI] [PubMed] [Google Scholar]
  637. Su G. F., Brahmbhatt H. N., Wehland J., Rohde M., Timmis K. N. Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect Immun. 1992 Aug;60(8):3345–3359. doi: 10.1128/iai.60.8.3345-3359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  638. Subbaramaiah K., Simms S. A. Photolabeling of CheR methyltransferase with S-adenosyl-L-methionine (AdoMet). Studies on the AdoMet binding site. J Biol Chem. 1992 Apr 25;267(12):8636–8642. [PubMed] [Google Scholar]
  639. Sugiyama T., Kido N., Komatsu T., Ohta M., Kato N. Expression of the cloned Escherichia coli O9 rfb gene in various mutant strains of Salmonella typhimurium. J Bacteriol. 1991 Jan;173(1):55–58. doi: 10.1128/jb.173.1.55-58.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  640. Suh S. J., Escalante-Semerena J. C. Cloning, sequencing and overexpression of cobA which encodes ATP:corrinoid adenosyltransferase in Salmonella typhimurium. Gene. 1993 Jul 15;129(1):93–97. doi: 10.1016/0378-1119(93)90701-4. [DOI] [PubMed] [Google Scholar]
  641. Suh S., Escalante-Semerena J. C. Purification and initial characterization of the ATP:corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J Bacteriol. 1995 Feb;177(4):921–925. doi: 10.1128/jb.177.4.921-925.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  642. Sukupolvi S., Riikonen P., Taira S., Saarilahti H., Rhen M. Plasmid-mediated serum resistance in Salmonella enterica. Microb Pathog. 1992 Mar;12(3):219–225. doi: 10.1016/0882-4010(92)90056-t. [DOI] [PubMed] [Google Scholar]
  643. Sukupolvi S., Vaara M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. Biochim Biophys Acta. 1989 Dec 6;988(3):377–387. doi: 10.1016/0304-4157(89)90011-7. [DOI] [PubMed] [Google Scholar]
  644. Sukupolvi S., Vuorio R., Qi S. Y., O'Connor D., Rhen M. Characterization of the traT gene and mutants that increase outer membrane permeability from the Salmonella typhimurium virulence plasmid. Mol Microbiol. 1990 Jan;4(1):49–57. doi: 10.1111/j.1365-2958.1990.tb02014.x. [DOI] [PubMed] [Google Scholar]
  645. Sverdlov E. D., Lisitsyn N. A., Gur'ev S. O., Smirnov Iu V., Rostapshov V. M. Geny, kodiruiushchie beta-sub''edinitsu RNK-polimeraz bakterii. I. Pervichnaia struktura EcoRI-C-fragmenta gena rpoB Salmonella typhimurium. Bioorg Khim. 1986 May;12(5):699–707. [PubMed] [Google Scholar]
  646. Swenson D. L., Clegg S. Identification of ancillary fim genes affecting fimA expression in Salmonella typhimurium. J Bacteriol. 1992 Dec;174(23):7697–7704. doi: 10.1128/jb.174.23.7697-7704.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  647. Swenson D. L., Kim K. J., Six E. W., Clegg S. The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. Mol Gen Genet. 1994 Jul 25;244(2):216–218. doi: 10.1007/BF00283525. [DOI] [PubMed] [Google Scholar]
  648. Switala J., Triggs-Raine B. L., Loewen P. C. Homology among bacterial catalase genes. Can J Microbiol. 1990 Oct;36(10):728–731. doi: 10.1139/m90-123. [DOI] [PubMed] [Google Scholar]
  649. Sørensen K. I., Baker K. E., Kelln R. A., Neuhard J. Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J Bacteriol. 1993 Jul;175(13):4137–4144. doi: 10.1128/jb.175.13.4137-4144.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  650. Sørensen K. I. Conformational heterogeneity in the Salmonella typhimurium pyrC and pyrD leader mRNAs produced in vivo. Nucleic Acids Res. 1994 Feb 25;22(4):625–631. doi: 10.1093/nar/22.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  651. Sørensen K. I., Neuhard J. Dual transcriptional initiation sites from the pyrC promoter control expression of the gene in Salmonella typhimurium. Mol Gen Genet. 1991 Feb;225(2):249–256. doi: 10.1007/BF00269856. [DOI] [PubMed] [Google Scholar]
  652. Taillon B. E., Little R., Lawther R. P. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase. Gene. 1988 Mar 31;63(2):245–252. doi: 10.1016/0378-1119(88)90528-8. [DOI] [PubMed] [Google Scholar]
  653. Taillon M. P., Gotto D. A., Lawther R. P. The DNA sequence of the promoter-attenuator of the ilvGEDA operon of Salmonella typhimurium. Nucleic Acids Res. 1981 Jul 24;9(14):3419–3432. doi: 10.1093/nar/9.14.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  654. Taira S., Rhen M. Identification and genetic analysis of mkaA--a gene of the Salmonella typhimurium virulence plasmid necessary for intracellular growth. Microb Pathog. 1989 Sep;7(3):165–173. doi: 10.1016/0882-4010(89)90052-1. [DOI] [PubMed] [Google Scholar]
  655. Taira S., Riikonen P., Saarilahti H., Sukupolvi S., Rhen M. The mkaC virulence gene of the Salmonella serovar typhimurium 96 kb plasmid encodes a transcriptional activator. Mol Gen Genet. 1991 Sep;228(3):381–384. doi: 10.1007/BF00260630. [DOI] [PubMed] [Google Scholar]
  656. Tame J. R., Murshudov G. N., Dodson E. J., Neil T. K., Dodson G. G., Higgins C. F., Wilkinson A. J. The structural basis of sequence-independent peptide binding by OppA protein. Science. 1994 Jun 10;264(5165):1578–1581. doi: 10.1126/science.8202710. [DOI] [PubMed] [Google Scholar]
  657. Tartaglia L. A., Storz G., Ames B. N. Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol. 1989 Dec 20;210(4):709–719. doi: 10.1016/0022-2836(89)90104-6. [DOI] [PubMed] [Google Scholar]
  658. Tartaglia L. A., Storz G., Brodsky M. H., Lai A., Ames B. N. Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J Biol Chem. 1990 Jun 25;265(18):10535–10540. [PubMed] [Google Scholar]
  659. Tate C. G., Muiry J. A., Henderson P. J. Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1992 Apr 5;267(10):6923–6932. [PubMed] [Google Scholar]
  660. Taylor G., Vimr E., Garman E., Laver G. Purification, crystallization and preliminary crystallographic study of neuraminidase from Vibrio cholerae and Salmonella typhimurium LT2. J Mol Biol. 1992 Aug 20;226(4):1287–1290. doi: 10.1016/0022-2836(92)91069-2. [DOI] [PubMed] [Google Scholar]
  661. Theisen M., Kelln R. A., Neuhard J. Cloning and characterization of the pyrF operon of Salmonella typhimurium. Eur J Biochem. 1987 May 4;164(3):613–619. doi: 10.1111/j.1432-1033.1987.tb11171.x. [DOI] [PubMed] [Google Scholar]
  662. Theisen M., Neuhard J. Translational coupling in the pyrF operon of Salmonella typhimurium. Mol Gen Genet. 1990 Jul;222(2-3):345–352. doi: 10.1007/BF00633839. [DOI] [PubMed] [Google Scholar]
  663. Thomas S. M., Crowne H. M., Pidsley S. C., Sedgwick S. G. Structural characterization of the Salmonella typhimurium LT2 umu operon. J Bacteriol. 1990 Sep;172(9):4979–4987. doi: 10.1128/jb.172.9.4979-4987.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  664. Thomas S. M. Extreme cold sensitivity of Salmonella typhimurium umu clones, effects of the umu region and flanking sequences. Mutat Res. 1993 Jan;285(1):95–99. doi: 10.1016/0027-5107(93)90056-l. [DOI] [PubMed] [Google Scholar]
  665. Thomas S. M., Sedgwick S. G. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair. J Bacteriol. 1989 Nov;171(11):5776–5782. doi: 10.1128/jb.171.11.5776-5782.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  666. Thorner L. K., Fandl J. P., Artz S. W. Analysis of sequence elements important for expression and regulation of the adenylate cyclase gene (cya) of Salmonella typhimurium. Genetics. 1990 Aug;125(4):709–717. doi: 10.1093/genetics/125.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  667. Timme T. L., Lawrence C. B., Moses R. E. Two new members of the OmpR superfamily detected by homology to a sensor-binding core domain. J Mol Evol. 1989 Jun;28(6):545–552. doi: 10.1007/BF02602935. [DOI] [PubMed] [Google Scholar]
  668. Trachtenberg S., DeRosier D. J. A molecular switch: subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments. J Mol Biol. 1991 Jul 5;220(1):67–77. doi: 10.1016/0022-2836(91)90381-f. [DOI] [PubMed] [Google Scholar]
  669. Tran P. V., Bannor T. A., Doktor S. Z., Nichols B. P. Chromosomal organization and expression of Escherichia coli pabA. J Bacteriol. 1990 Jan;172(1):397–410. doi: 10.1128/jb.172.1.397-410.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  670. Trzebiatowski J. R., O'Toole G. A., Escalante-Semerena J. C. The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1994 Jun;176(12):3568–3575. doi: 10.1128/jb.176.12.3568-3575.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  671. Tsai S. P., Hartin R. J., Ryu J. Transformation in restriction-deficient Salmonella typhimurium LT2. J Gen Microbiol. 1989 Sep;135(9):2561–2567. doi: 10.1099/00221287-135-9-2561. [DOI] [PubMed] [Google Scholar]
  672. Tubulekas I., Buckingham R. H., Hughes D. Mutant ribosomes can generate dominant kirromycin resistance. J Bacteriol. 1991 Jun;173(12):3635–3643. doi: 10.1128/jb.173.12.3635-3643.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  673. Tubulekas I., Hughes D. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. J Bacteriol. 1993 Jan;175(1):240–250. doi: 10.1128/jb.175.1.240-250.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  674. Tubulekas I., Hughes D. Growth and translation elongation rate are sensitive to the concentration of EF-Tu. Mol Microbiol. 1993 May;8(4):761–770. doi: 10.1111/j.1365-2958.1993.tb01619.x. [DOI] [PubMed] [Google Scholar]
  675. Tuohy T. M., Thompson S., Gesteland R. F., Hughes D., Atkins J. F. The role of EF-Tu and other translation components in determining translocation step size. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):274–278. doi: 10.1016/0167-4781(90)90180-a. [DOI] [PubMed] [Google Scholar]
  676. Tupper A. E., Owen-Hughes T. A., Ussery D. W., Santos D. S., Ferguson D. J., Sidebotham J. M., Hinton J. C., Higgins C. F. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J. 1994 Jan 1;13(1):258–268. doi: 10.1002/j.1460-2075.1994.tb06256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  677. Turnowsky F., Fuchs K., Jeschek C., Högenauer G. envM genes of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1989 Dec;171(12):6555–6565. doi: 10.1128/jb.171.12.6555-6565.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  678. Ueno T., Oosawa K., Aizawa S. Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J Mol Biol. 1994 Feb 18;236(2):546–555. doi: 10.1006/jmbi.1994.1164. [DOI] [PubMed] [Google Scholar]
  679. Ueno T., Oosawa K., Aizawa S. M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J Mol Biol. 1992 Oct 5;227(3):672–677. doi: 10.1016/0022-2836(92)90216-7. [DOI] [PubMed] [Google Scholar]
  680. Urbanowski M. L., Plamann M. D., Stauffer L. T., Stauffer G. V. Cloning and characterization of the gene for Salmonella typhimurium serine hydroxymethyltransferase. Gene. 1984 Jan;27(1):47–54. doi: 10.1016/0378-1119(84)90237-3. [DOI] [PubMed] [Google Scholar]
  681. Urbanowski M. L., Stauffer G. V. Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol. 1989 Oct;171(10):5620–5629. doi: 10.1128/jb.171.10.5620-5629.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  682. Urbanowski M. L., Stauffer G. V. Nucleotide sequence and biochemical characterization of the metJ gene from Salmonella typhimurium LT2. Nucleic Acids Res. 1985 Feb 11;13(3):673–685. doi: 10.1093/nar/13.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  683. Urbanowski M. L., Stauffer G. V. Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. J Bacteriol. 1989 Jun;171(6):3277–3281. doi: 10.1128/jb.171.6.3277-3281.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  684. Urbanowski M. L., Stauffer G. V. The control region of the metH gene of Salmonella typhimurium LT2: an atypical met promoter. Gene. 1988 Dec 15;73(1):193–200. doi: 10.1016/0378-1119(88)90325-3. [DOI] [PubMed] [Google Scholar]
  685. Vandenbosch J. L., Kurlandsky D. R., Urdangaray R., Jones G. W. Evidence of coordinate regulation of virulence in Salmonella typhimurium involving the rsk element of the 95-kilobase plasmid. Infect Immun. 1989 Aug;57(8):2566–2568. doi: 10.1128/iai.57.8.2566-2568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  686. Vandenbosch J. L., Rabert D. K., Kurlandsky D. R., Jones G. W. Sequence analysis of rsk, a portion of the 95-kilobase plasmid of Salmonella typhimurium associated with resistance to the bactericidal activity of serum. Infect Immun. 1989 Mar;57(3):850–857. doi: 10.1128/iai.57.3.850-857.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  687. Vartak N. B., Reizer J., Reizer A., Gripp J. T., Groisman E. A., Wu L. F., Tomich J. M., Saier M. H., Jr Sequence and evolution of the FruR protein of Salmonella typhimurium: a pleiotropic transcriptional regulatory protein possessing both activator and repressor functions which is homologous to the periplasmic ribose-binding protein. Res Microbiol. 1991 Nov-Dec;142(9):951–963. doi: 10.1016/0923-2508(91)90005-u. [DOI] [PubMed] [Google Scholar]
  688. Vaughan P., Sedgwick B. A weak adaptive response to alkylation damage in Salmonella typhimurium. J Bacteriol. 1991 Jun;173(12):3656–3662. doi: 10.1128/jb.173.12.3656-3662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  689. Vinitsky A., Teng H., Grubmeyer C. T. Cloning and nucleic acid sequence of the Salmonella typhimurium pncB gene and structure of nicotinate phosphoribosyltransferase. J Bacteriol. 1991 Jan;173(2):536–540. doi: 10.1128/jb.173.2.536-540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  690. Vogler A. P., Homma M., Irikura V. M., Macnab R. M. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J Bacteriol. 1991 Jun;173(11):3564–3572. doi: 10.1128/jb.173.11.3564-3572.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  691. Vuorio R., Hirvas L., Vaara M. The Ssc protein of enteric bacteria has significant homology to the acyltransferase Lpxa of lipid A biosynthesis, and to three acetyltransferases. FEBS Lett. 1991 Nov 4;292(1-2):90–94. doi: 10.1016/0014-5793(91)80841-p. [DOI] [PubMed] [Google Scholar]
  692. Vuorio R., Härkönen T., Tolvanen M., Vaara M. The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Lett. 1994 Jan 17;337(3):289–292. doi: 10.1016/0014-5793(94)80211-4. [DOI] [PubMed] [Google Scholar]
  693. Vuorio R., Vaara M. Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA. J Bacteriol. 1992 Nov;174(22):7090–7097. doi: 10.1128/jb.174.22.7090-7097.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  694. Walter C., Höner zu Bentrup K., Schneider E. Large scale purification, nucleotide binding properties, and ATPase activity of the MalK subunit of Salmonella typhimurium maltose transport complex. J Biol Chem. 1992 May 5;267(13):8863–8869. [PubMed] [Google Scholar]
  695. Walter C., Wilken S., Schneider E. Characterization of site-directed mutations in conserved domains of MalK, a bacterial member of the ATP-binding cassette (ABC) family [corrected]. FEBS Lett. 1992 May 25;303(1):41–44. doi: 10.1016/0014-5793(92)80473-t. [DOI] [PubMed] [Google Scholar]
  696. Wang L., Reeves P. R. Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J Bacteriol. 1994 Jul;176(14):4348–4356. doi: 10.1128/jb.176.14.4348-4356.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  697. Wang L., Romana L. K., Reeves P. R. Molecular analysis of a Salmonella enterica group E1 rfb gene cluster: O antigen and the genetic basis of the major polymorphism. Genetics. 1992 Mar;130(3):429–443. doi: 10.1093/genetics/130.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  698. Wang Q., Sacco M., Ricca E., Lago C. T., De Felice M., Calvo J. M. Organization of Lrp-binding sites upstream of ilvIH in Salmonella typhimurium. Mol Microbiol. 1993 Mar;7(6):883–891. doi: 10.1111/j.1365-2958.1993.tb01179.x. [DOI] [PubMed] [Google Scholar]
  699. Warner T. G., Harris R., McDowell R., Vimr E. R. Photolabelling of Salmonella typhimurium LT2 sialidase. Identification of a peptide with a predicted structural similarity to the active sites of influenza-virus sialidases. Biochem J. 1992 Aug 1;285(Pt 3):957–964. doi: 10.1042/bj2850957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  700. Wasserman S. A., Daub E., Grisafi P., Botstein D., Walsh C. T. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry. 1984 Oct 23;23(22):5182–5187. doi: 10.1021/bi00317a015. [DOI] [PubMed] [Google Scholar]
  701. Watanabe M., Ishidate M., Jr, Nohmi T. Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res. 1990 Feb 25;18(4):1059–1059. doi: 10.1093/nar/18.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  702. Watanabe M., Sofuni T., Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem. 1992 Apr 25;267(12):8429–8436. [PubMed] [Google Scholar]
  703. Wei B. Y., Bradbeer C., Kadner R. J. Conserved structural and regulatory regions in the Salmonella typhimurium btuB gene for the outer membrane vitamin B12 transport protein. Res Microbiol. 1992 Jun;143(5):459–466. doi: 10.1016/0923-2508(92)90091-2. [DOI] [PubMed] [Google Scholar]
  704. Weigel N., Powers D. A., Roseman S. Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14499–14509. [PubMed] [Google Scholar]
  705. Wek R. C., Hatfield G. W. Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12. Transcription from divergent overlapping promoters. J Biol Chem. 1986 Feb 15;261(5):2441–2450. [PubMed] [Google Scholar]
  706. Widenhorn K. A., Somers J. M., Kay W. W. Genetic regulation of the tricarboxylate transport operon (tctI) of Salmonella typhimurium. J Bacteriol. 1989 Aug;171(8):4436–4441. doi: 10.1128/jb.171.8.4436-4441.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  707. Wingfield P., Graber P., Turcatti G., Movva N. R., Pelletier M., Craig S., Rose K., Miller C. G. Purification and characterization of a methionine-specific aminopeptidase from Salmonella typhimurium. Eur J Biochem. 1989 Mar 1;180(1):23–32. doi: 10.1111/j.1432-1033.1989.tb14610.x. [DOI] [PubMed] [Google Scholar]
  708. Woehlke G., Wifling K., Dimroth P. Sequence of the sodium ion pump oxaloacetate decarboxylase from Salmonella typhimurium. J Biol Chem. 1992 Nov 15;267(32):22798–22803. [PubMed] [Google Scholar]
  709. Wong A., Kean L., Maurer R. Sequence of the dnaB gene of Salmonella typhimurium. J Bacteriol. 1988 Jun;170(6):2668–2675. doi: 10.1128/jb.170.6.2668-2675.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  710. Wong K. K., McClelland M. A BlnI restriction map of the Salmonella typhimurium LT2 genome. J Bacteriol. 1992 Mar;174(5):1656–1661. doi: 10.1128/jb.174.5.1656-1661.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  711. Wong K. K., McClelland M. Dissection of the Salmonella typhimurium genome by use of a Tn5 derivative carrying rare restriction sites. J Bacteriol. 1992 Jun;174(11):3807–3811. doi: 10.1128/jb.174.11.3807-3811.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  712. Wong K. K., McClelland M. Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed PCR of RNA. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):639–643. doi: 10.1073/pnas.91.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  713. Wong K. K., Suen K. L., Kwan H. S. Transcription of pfl is regulated by anaerobiosis, catabolite repression, pyruvate, and oxrA: pfl::Mu dA operon fusions of Salmonella typhimurium. J Bacteriol. 1989 Sep;171(9):4900–4905. doi: 10.1128/jb.171.9.4900-4905.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  714. Wong K. K., Wong R. M., Rudd K. E., McClelland M. High-resolution restriction map for a 240-kilobase region spanning 91 to 96 minutes on the Salmonella typhimurium LT2 chromosome. J Bacteriol. 1994 Sep;176(18):5729–5734. doi: 10.1128/jb.176.18.5729-5734.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  715. Woodgate R., Levine A. S., Koch W. H., Cebula T. A., Eisenstadt E. Induction and cleavage of Salmonella typhimurium UmuD protein. Mol Gen Genet. 1991 Sep;229(1):81–85. doi: 10.1007/BF00264216. [DOI] [PubMed] [Google Scholar]
  716. Wu J. Y., Siegel L. M., Kredich N. M. High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J Bacteriol. 1991 Jan;173(1):325–333. doi: 10.1128/jb.173.1.325-333.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  717. Wu T. T. A model for three-point analysis of random general transduction. Genetics. 1966 Aug;54(2):405–410. doi: 10.1093/genetics/54.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  718. Wu W. F., Urbanowski M. L., Stauffer G. V. MetJ-mediated regulation of the Salmonella typhimurium metE and metR genes occurs through a common operator region. FEMS Microbiol Lett. 1993 Apr 1;108(2):145–150. doi: 10.1111/j.1574-6968.1993.tb06090.x. [DOI] [PubMed] [Google Scholar]
  719. Wu W. F., Urbanowski M. L., Stauffer G. V. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J Bacteriol. 1992 Jul;174(14):4833–4837. doi: 10.1128/jb.174.14.4833-4837.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  720. Wyk P., Reeves P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J Bacteriol. 1989 Oct;171(10):5687–5693. doi: 10.1128/jb.171.10.5687-5693.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  721. Xu K., Delling J., Elliott T. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol. 1992 Jun;174(12):3953–3963. doi: 10.1128/jb.174.12.3953-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  722. Xu K., Elliott T. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol. 1993 Aug;175(16):4990–4999. doi: 10.1128/jb.175.16.4990-4999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  723. Xu K., Elliott T. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1994 Jun;176(11):3196–3203. doi: 10.1128/jb.176.11.3196-3203.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  724. Yamada M., Hakura A., Sofuni T., Nohmi T. New method for gene disruption in Salmonella typhimurium: construction and characterization of an ada-deletion derivative of Salmonella typhimurium TA1535. J Bacteriol. 1993 Sep;175(17):5539–5547. doi: 10.1128/jb.175.17.5539-5547.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  725. Yamamoto K., Imae Y. Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):217–221. doi: 10.1073/pnas.90.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  726. Yamashita M. M., Almassy R. J., Janson C. A., Cascio D., Eisenberg D. Refined atomic model of glutamine synthetase at 3.5 A resolution. J Biol Chem. 1989 Oct 25;264(30):17681–17690. doi: 10.2210/pdb2gls/pdb. [DOI] [PubMed] [Google Scholar]
  727. Yang Y. L., Goldrick D., Hong J. S. Identification of the products and nucleotide sequences of two regulatory genes involved in the exogenous induction of phosphoglycerate transport in Salmonella typhimurium. J Bacteriol. 1988 Sep;170(9):4299–4303. doi: 10.1128/jb.170.9.4299-4303.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  728. Yanofsky C., vanCleemput M. Nucleotide sequence of trpE of Salmonella typhimurium and its homology with the corresponding sequence of Escherichia coli. J Mol Biol. 1982 Mar 5;155(3):235–246. doi: 10.1016/0022-2836(82)90003-1. [DOI] [PubMed] [Google Scholar]
  729. Yoshioka K., Aizawa S., Yamaguchi S. Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J Bacteriol. 1995 Feb;177(4):1090–1093. doi: 10.1128/jb.177.4.1090-1093.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  730. Yu G. Q., Hong J. S. Identification and nucleotide sequence of the activator gene of the externally induced phosphoglycerate transport system of Salmonella typhimurium. Gene. 1986;45(1):51–57. doi: 10.1016/0378-1119(86)90131-9. [DOI] [PubMed] [Google Scholar]
  731. ZINDER N. D., LEDERBERG J. Genetic exchange in Salmonella. J Bacteriol. 1952 Nov;64(5):679–699. doi: 10.1128/jb.64.5.679-699.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  732. Zahrt T. C., Mora G. C., Maloy S. Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. J Bacteriol. 1994 Mar;176(5):1527–1529. doi: 10.1128/jb.176.5.1527-1529.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  733. Zhu N., Olivera B. M., Roth J. R. Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol. 1991 Feb;173(3):1311–1320. doi: 10.1128/jb.173.3.1311-1320.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  734. Zhu N., Olivera B. M., Roth J. R. Genetic characterization of the pnuC gene, which encodes a component of the nicotinamide mononucleotide transport system in Salmonella typhimurium. J Bacteriol. 1989 Aug;171(8):4402–4409. doi: 10.1128/jb.171.8.4402-4409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  735. Zhu N., Roth J. R. The nadI region of Salmonella typhimurium encodes a bifunctional regulatory protein. J Bacteriol. 1991 Feb;173(3):1302–1310. doi: 10.1128/jb.173.3.1302-1310.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  736. Zhyvoloup A. N., Woodmaska M. I., Kroupskaya I. V., Paton E. B. Nucleotide sequence of the rplJL operon and the deduced primary structure of the encoded L10 and L7/L12 proteins of Salmonella typhimurium compared to that of Escherichia coli. Nucleic Acids Res. 1990 Aug 11;18(15):4620–4620. doi: 10.1093/nar/18.15.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  737. Zieg J., Simon M. Analysis of the nucleotide sequence of an invertible controlling element. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4196–4200. doi: 10.1073/pnas.77.7.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  738. van Dijl J. M., de Jong A., Smith H., Bron S., Venema G. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis. FEMS Microbiol Lett. 1991 Jul 1;65(3):345–351. doi: 10.1016/0378-1097(91)90239-7. [DOI] [PubMed] [Google Scholar]
  739. van Dijl J. M., van den Bergh R., Reversma T., Smith H., Bron S., Venema G. Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. Mol Gen Genet. 1990 Sep;223(2):233–240. doi: 10.1007/BF00265059. [DOI] [PubMed] [Google Scholar]
  740. van der Vlag J., van Dam K., Postma P. W. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. J Bacteriol. 1994 Jun;176(12):3518–3526. doi: 10.1128/jb.176.12.3518-3526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES