Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Aug;46(2):468–474. doi: 10.1128/aem.46.2.468-474.1983

Novel Biotransformations of 7-Ethoxycoumarin by Streptomyces griseus

F Sima Sariaslani 1, John P Rosazza 1
PMCID: PMC239413  PMID: 16346369

Abstract

Biotransformation of 7-ethoxycoumarin by Streptomyces griseus resulted in the accumulation of two metabolites which were isolated and identified as 7-hydroxycoumarin and 7-hydroxy-6-methoxycoumarin. A novel series of biotransformation reactions is implicated in the conversion of the ethoxycoumarin substrate to these products, including O-deethylation, 6-hydroxylation to form a 6,7-dihydroxycoumarin catechol, and subsequent O-methylation. Either 7-hydroxycoumarin or 6,7-dihydroxycoumarin was biotransformed to 7-hydroxy-6-methoxycoumarin by S. griseus. Trace amounts of the isomeric 6-hydroxy-7-methoxycoumarin were detected when 6,7-dihydroxycoumarin was used as the substrate. Efforts to obtain a cell-free catechol-O-methyltransferase enzyme system from S. griseus were unsuccessful. However, [methyl-14C]methionine was used with cultures of S. griseus to form 7-hydroxy-6-[14C]methoxycoumarin.

Full text

PDF
468

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz R. H., Seno E. T. Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob Agents Chemother. 1981 Aug;20(2):214–225. doi: 10.1128/aac.20.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betts R. E., Walters D. E., Rosazza J. P. Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J Med Chem. 1974 Jun;17(6):599–602. doi: 10.1021/jm00252a006. [DOI] [PubMed] [Google Scholar]
  3. Borchardt R. T. A rapid spectrophotometric assay for catechol-O-methyltransferase. Anal Biochem. 1974 Apr;58(2):382–389. doi: 10.1016/0003-2697(74)90206-1. [DOI] [PubMed] [Google Scholar]
  4. Corcoran J. W. S-adenosylmethionine:erythromycin C O-methyltransferase. Methods Enzymol. 1975;43:487–498. doi: 10.1016/0076-6879(75)43109-3. [DOI] [PubMed] [Google Scholar]
  5. Davis P. J., Rosazza J. P. Microbial transformations of natural antitumor agents. 2. Studies with d-tetrandrine and laudanosine. J Org Chem. 1976 Jul 23;41(15):2548–2551. doi: 10.1021/jo00877a009. [DOI] [PubMed] [Google Scholar]
  6. Davis P. J., Wiese D., Rosazza J. P. Microbial transformations of glaucine. J Chem Soc Perkin 1. 1977;1:1–6. doi: 10.1039/p19770000001. [DOI] [PubMed] [Google Scholar]
  7. Dean F. M., Parton B., Somvichien N., Taylor D. A. The coumarins of Ptaeroxylon obliquum. Tetrahedron Lett. 1967 Jun;23:2147–2151. doi: 10.1016/s0040-4039(00)90785-8. [DOI] [PubMed] [Google Scholar]
  8. Godtfredsen W. O., Vangedal S., Thomas D. W. Cycloheptamycin, a new peptide antibiotic. Structure determination by mass spectrometry. Tetrahedron. 1970 Nov;26(21):4931–4946. doi: 10.1016/s0040-4020(01)93145-x. [DOI] [PubMed] [Google Scholar]
  9. Kunc F. Microbial decomposition of coumarin in soil. Folia Microbiol (Praha) 1974;19(3):209–217. doi: 10.1007/BF02895020. [DOI] [PubMed] [Google Scholar]
  10. Levy C. C., Frost P. The metabolism of coumarin by a microorganism. V. Melilotate hydroxylase. J Biol Chem. 1966 Feb 25;241(4):997–1003. [PubMed] [Google Scholar]
  11. Lin R. L., Narasimhachari N. Specific tlc, gc, and gc-ms methods for kinetic studies with COMT. Anal Biochem. 1974 Jan;57(1):46–58. doi: 10.1016/0003-2697(74)90048-7. [DOI] [PubMed] [Google Scholar]
  12. Nabih T., Davis P. J., Caputo J. F., Rosazza J. P. Microbial transformations of natural antitumor agents. 3. Conversion of thalicarpine to (+)-hernandalinol by Streptomyces punipalus. J Med Chem. 1977 Jul;20(7):914–917. doi: 10.1021/jm00217a010. [DOI] [PubMed] [Google Scholar]
  13. Nambudiri A. M., Bhat J. V. Conversion of p-coumarate into caffeate by Streptomyces nigrifaciens. Purification and properties of the hydroxylating enzyme. Biochem J. 1972 Nov;130(2):425–433. doi: 10.1042/bj1300425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pogell B. M. S-adenosylmethionine:O-demethylpuromycin O-methyltransferase. Methods Enzymol. 1975;43:508–515. doi: 10.1016/0076-6879(75)43112-3. [DOI] [PubMed] [Google Scholar]
  15. Rosazza J. P., Kammer M., Youel L. Microbial models of mammalian metabolism O-demethylations of papaverine. Xenobiotica. 1977 Mar;7(3):133–143. doi: 10.3109/00498257709036245. [DOI] [PubMed] [Google Scholar]
  16. Rosazza J. P., Stocklinski A. W., Gustafson M. A., Adrian J., Smith R. V. Microbial models of mammalian metabolism. O-Dealkylation of 10,11-dimethoxyaporphine. J Med Chem. 1975 Aug;18(8):791–794. doi: 10.1021/jm00242a006. [DOI] [PubMed] [Google Scholar]
  17. Smith R. V., Rosazza J. P. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys. 1974 Apr 2;161(2):551–558. doi: 10.1016/0003-9861(74)90338-5. [DOI] [PubMed] [Google Scholar]
  18. Speedie M. K., Hornemann U., Floss H. G. S-adenoxylmethionine:indolepyruvate 3-methyltransferase. Methods Enzymol. 1975;43:498–502. doi: 10.1016/0076-6879(75)43110-x. [DOI] [PubMed] [Google Scholar]
  19. Ullrich V., Weber P. The O-dealkylation of 7-ethoxycoumarin by liver microsomes. A direct fluorometric test. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1171–1177. doi: 10.1515/bchm2.1972.353.2.1171. [DOI] [PubMed] [Google Scholar]
  20. Veser J., Martin R., Thomas H. Immunocytochemical demonstration of catechol methyltransferase in Candida tropicalis. J Gen Microbiol. 1981 Sep;126(1):97–101. doi: 10.1099/00221287-126-1-97. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES