Full Text
The Full Text of this article is available as a PDF (432.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS E. The enzymatic synthesis of histidine from histidinol. J Biol Chem. 1954 Aug;209(2):829–846. [PubMed] [Google Scholar]
- AMES B. N., GARRY B., HERZENBERG L. A. The genetic control of the enzymes of histidine biosynthesis in Salmonella typhimurium. J Gen Microbiol. 1960 Apr;22:369–378. doi: 10.1099/00221287-22-2-369. [DOI] [PubMed] [Google Scholar]
- AMES B. N., HARTMAN P. E., JACOB F. Chromosomal alterations affecting the regulation of histidine biosynthetic enzymes in Salmonella. J Mol Biol. 1963 Jul;7:23–42. doi: 10.1016/s0022-2836(63)80016-9. [DOI] [PubMed] [Google Scholar]
- AMES B. N., MARTIN R. G., GARRY B. J. The first step of histidine biosynthesis. J Biol Chem. 1961 Jul;236:2019–2026. [PubMed] [Google Scholar]
- AMES B. N. The biosynthesis of histidine; D-erythro-imidazoleglycerol phosphate dehydrase. J Biol Chem. 1957 Sep;228(1):131–143. [PubMed] [Google Scholar]
- Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem. 1978;47:967–996. doi: 10.1146/annurev.bi.47.070178.004535. [DOI] [PubMed] [Google Scholar]
- Adhya S., Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982 Jul;29(3):939–944. doi: 10.1016/0092-8674(82)90456-1. [DOI] [PubMed] [Google Scholar]
- Alifano P., Bruni C. B., Carlomagno M. S. Control of mRNA processing and decay in prokaryotes. Genetica. 1994;94(2-3):157–172. doi: 10.1007/BF01443430. [DOI] [PubMed] [Google Scholar]
- Alifano P., Ciampi M. S., Nappo A. G., Bruni C. B., Carlomagno M. S. In vivo analysis of the mechanisms responsible for strong transcriptional polarity in a "sense" mutant within an intercistronic region. Cell. 1988 Oct 21;55(2):351–360. doi: 10.1016/0092-8674(88)90058-x. [DOI] [PubMed] [Google Scholar]
- Alifano P., Piscitelli C., Blasi V., Rivellini F., Nappo A. G., Bruni C. B., Carlomagno M. S. Processing of a polycistronic mRNA requires a 5' cis element and active translation. Mol Microbiol. 1992 Mar;6(6):787–798. doi: 10.1111/j.1365-2958.1992.tb01529.x. [DOI] [PubMed] [Google Scholar]
- Alifano P., Rivellini F., Limauro D., Bruni C. B., Carlomagno M. S. A consensus motif common to all Rho-dependent prokaryotic transcription terminators. Cell. 1991 Feb 8;64(3):553–563. doi: 10.1016/0092-8674(91)90239-u. [DOI] [PubMed] [Google Scholar]
- Alifano P., Rivellini F., Nappo A. G., Bruni C. B., Carlomagno M. S. Alternative patterns of his operon transcription and mRNA processing generated by metabolic perturbation. Gene. 1994 Aug 19;146(1):15–21. doi: 10.1016/0378-1119(94)90828-1. [DOI] [PubMed] [Google Scholar]
- Alifano P., Rivellini F., Piscitelli C., Arraiano C. M., Bruni C. B., Carlomagno M. S. Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev. 1994 Dec 15;8(24):3021–3031. doi: 10.1101/gad.8.24.3021. [DOI] [PubMed] [Google Scholar]
- Altboum Z., Gottlieb S., Lebens G. A., Polacheck I., Segal E. Isolation of the Candida albicans histidinol dehydrogenase (HIS4) gene and characterization of a histidine auxotroph. J Bacteriol. 1990 Jul;172(7):3898–3904. doi: 10.1128/jb.172.7.3898-3904.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altman S. Ribonuclease P. Postscript. J Biol Chem. 1990 Nov 25;265(33):20053–20056. [PubMed] [Google Scholar]
- Ames B. N., Garry B. COORDINATE REPRESSION OF THE SYNTHESIS OF FOUR HISTIDINE BIOSYNTHETIC ENZYMES BY HISTIDINE. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1453–1461. doi: 10.1073/pnas.45.10.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antón D. N. Genetic control of defective cell shape and osmotic-sensitivity in a mutant of Salmonella typhimurium. Mol Gen Genet. 1978 Apr 17;160(3):277–286. doi: 10.1007/BF00332971. [DOI] [PubMed] [Google Scholar]
- Antón D. N. Histidine regulatory mutants in Salmonella typhimurium. V. Two new classes histidine regulatory mutants. J Mol Biol. 1968 May 14;33(3):533–546. doi: 10.1016/0022-2836(68)90304-5. [DOI] [PubMed] [Google Scholar]
- Antón D. N. Positive selection of mutants with cell envelope defects of a Salmonells typhimurium strain hypersensitive to the products of genes hisF and hisH. J Bacteriol. 1979 Mar;137(3):1271–1281. doi: 10.1128/jb.137.3.1271-1281.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arndt K. T., Styles C., Fink G. R. Multiple global regulators control HIS4 transcription in yeast. Science. 1987 Aug 21;237(4817):874–880. doi: 10.1126/science.3303332. [DOI] [PubMed] [Google Scholar]
- Artz S. W., Broach J. R. Histidine regulation in Salmonella typhimurium: an activator attenuator model of gene regulation. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3453–3457. doi: 10.1073/pnas.72.9.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkins J. F., Loper J. C. Transcription initiation in the histidine operon of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1970 Apr;65(4):925–932. doi: 10.1073/pnas.65.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes W. M. DNA sequence from the histidine operon control region: seven histidine codons in a row. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4281–4285. doi: 10.1073/pnas.75.9.4281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bateman E., Paule M. R. Promoter occlusion during ribosomal RNA transcription. Cell. 1988 Sep 23;54(7):985–992. doi: 10.1016/0092-8674(88)90113-4. [DOI] [PubMed] [Google Scholar]
- Bauerle R. H., Margolin P. Evidence for two sites for initiation of gene expression in the tryptophan operon of Salmonella typhimurium. J Mol Biol. 1967 Jun 28;26(3):423–436. doi: 10.1016/0022-2836(67)90313-0. [DOI] [PubMed] [Google Scholar]
- Bear D. G., Hicks P. S., Escudero K. W., Andrews C. L., McSwiggen J. A., von Hippel P. H. Interactions of Escherichia coli transcription termination factor rho with RNA. II. Electron microscopy and nuclease protection experiments. J Mol Biol. 1988 Feb 20;199(4):623–635. doi: 10.1016/0022-2836(88)90306-3. [DOI] [PubMed] [Google Scholar]
- Beckler G. S., Reeve J. N. Conservation of primary structure in the hisI gene of the archaebacterium, Methanococcus vannielii, the eubacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae. Mol Gen Genet. 1986 Jul;204(1):133–140. doi: 10.1007/BF00330200. [DOI] [PubMed] [Google Scholar]
- Belasco J. G., Higgins C. F. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. doi: 10.1016/0378-1119(88)90123-0. [DOI] [PubMed] [Google Scholar]
- Bell R. M., Parsons S. M., Dubravac S. A., Redfield A. G., Koshland D. E., Jr Characterization of slowly interconvertible states of phosphoribosyladenosine triphosphate synthetase dependent on temperature, substrates, and histidine. J Biol Chem. 1974 Jul 10;249(13):4110–4118. [PubMed] [Google Scholar]
- Benachenhou-Lahfa N., Forterre P., Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 1993 Apr;36(4):335–346. doi: 10.1007/BF00182181. [DOI] [PubMed] [Google Scholar]
- Berberich M. A., Venetianer P., Goldberger R. F. Alternative modes of derepression of the histidine operon observed in Salmonella typhimurium. J Biol Chem. 1966 Oct 10;241(19):4426–4433. [PubMed] [Google Scholar]
- Blasi F., Bruni C. B. Regulation of the histidine operon: translation-controlled transcription termination (a mechanism common to several biosynthetic operons). Curr Top Cell Regul. 1981;19:1–45. doi: 10.1016/b978-0-12-152819-5.50018-x. [DOI] [PubMed] [Google Scholar]
- Bochner B. R., Ames B. N. ZTP (5-amino 4-imidazole carboxamide riboside 5'-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell. 1982 Jul;29(3):929–937. doi: 10.1016/0092-8674(82)90455-x. [DOI] [PubMed] [Google Scholar]
- Bouvet P., Belasco J. G. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli. Nature. 1992 Dec 3;360(6403):488–491. doi: 10.1038/360488a0. [DOI] [PubMed] [Google Scholar]
- Brady D. R., Houston L. L. Some properties of the catalytic sites of imidazoleglycerol phosphate dehydratase-histidinol phosphate phosphatase, a bifunctional enzyme from Salmonella typhimurium. J Biol Chem. 1973 Apr 10;248(7):2588–2592. [PubMed] [Google Scholar]
- Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol. 1994 Jun;38(6):566–576. doi: 10.1007/BF00175876. [DOI] [PubMed] [Google Scholar]
- Bruni C. B., Carlomagno M. S., Formisano S., Paolella G. Primary and secondary structural homologies between the HIS4 gene product of Saccharomyces cerevisiae and the hisIE and hisD gene products of Escherichia coli and Salmonella typhimurium. Mol Gen Genet. 1986 Jun;203(3):389–396. doi: 10.1007/BF00422062. [DOI] [PubMed] [Google Scholar]
- Burke J. D., Gould K. L. Molecular cloning and characterization of the Schizosaccharomyces pombe his3 gene for use as a selectable marker. Mol Gen Genet. 1994 Jan;242(2):169–176. doi: 10.1007/BF00391010. [DOI] [PubMed] [Google Scholar]
- Bustos S. A., Schaefer M. R., Golden S. S. Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity. J Bacteriol. 1990 Apr;172(4):1998–2004. doi: 10.1128/jb.172.4.1998-2004.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürger E., Görisch H. Evidence for an essential lysine at the active site of L-histidinol:NAD+ oxidoreductase; a bifunctional dehydrogenase. Eur J Biochem. 1981 Aug;118(1):125–130. doi: 10.1111/j.1432-1033.1981.tb05494.x. [DOI] [PubMed] [Google Scholar]
- Bürger E., Görisch H., Lingens F. The catalytically active form of histidinol dehydrogenase from Salmonella typhimurium. Biochem J. 1979 Sep 1;181(3):771–774. doi: 10.1042/bj1810771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürger E., Görisch H. Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase. Eur J Biochem. 1981 May;116(1):137–142. doi: 10.1111/j.1432-1033.1981.tb05311.x. [DOI] [PubMed] [Google Scholar]
- Carere A., Russi S., Bignami M., Sermonti G. An operon for histidine biosynthesis in Streptomyces coelicolor. I. Genetic evidence. Mol Gen Genet. 1973 Jul 2;123(3):219–224. doi: 10.1007/BF00271240. [DOI] [PubMed] [Google Scholar]
- Carlomagno M. S., Blasi F., Bruni C. B. Gene organization in the distal part of the Salmonella typhimurium histidine operon and determination and sequence of the operon transcription terminator. Mol Gen Genet. 1983;191(3):413–420. doi: 10.1007/BF00425756. [DOI] [PubMed] [Google Scholar]
- Carlomagno M. S., Chiariotti L., Alifano P., Nappo A. G., Bruni C. B. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol. 1988 Oct 5;203(3):585–606. doi: 10.1016/0022-2836(88)90194-5. [DOI] [PubMed] [Google Scholar]
- Carlomagno M. S., Riccio A., Bruni C. B. Convergently functional, Rho-independent terminator in Salmonella typhimurium. J Bacteriol. 1985 Jul;163(1):362–368. doi: 10.1128/jb.163.1.362-368.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadesus J., Roth J. R. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Mol Gen Genet. 1989 Apr;216(2-3):210–216. doi: 10.1007/BF00334358. [DOI] [PubMed] [Google Scholar]
- Chan C. L., Landick R. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J Mol Biol. 1993 Sep 5;233(1):25–42. doi: 10.1006/jmbi.1993.1482. [DOI] [PubMed] [Google Scholar]
- Chan C. L., Landick R. The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem. 1989 Dec 5;264(34):20796–20804. [PubMed] [Google Scholar]
- Chen C. Y., Richardson J. P. Sequence elements essential for rho-dependent transcription termination at lambda tR1. J Biol Chem. 1987 Aug 15;262(23):11292–11299. [PubMed] [Google Scholar]
- Chiariotti L., Alifano P., Carlomagno M. S., Bruni C. B. Nucleotide sequence of the Escherichia coli hisD gene and of the Escherichia coli and Salmonella typhimurium hisIE region. Mol Gen Genet. 1986 Jun;203(3):382–388. doi: 10.1007/BF00422061. [DOI] [PubMed] [Google Scholar]
- Chopin A. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):21–37. doi: 10.1111/j.1574-6976.1993.tb00011.x. [DOI] [PubMed] [Google Scholar]
- Chumley F. G., Roth J. R. Genetic fusions that place the lactose genes under histidine operon control. J Mol Biol. 1981 Feb 5;145(4):697–712. doi: 10.1016/0022-2836(81)90310-7. [DOI] [PubMed] [Google Scholar]
- Ciampi M. S., Alifano P., Nappo A. G., Bruni C. B., Carlomagno M. S. Features of the rho-dependent transcription termination polar element within the hisG cistron of Salmonella typhimurium. J Bacteriol. 1989 Aug;171(8):4472–4478. doi: 10.1128/jb.171.8.4472-4478.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciampi M. S., Roth J. R. Polarity effects in the hisG gene of salmonella require a site within the coding sequence. Genetics. 1988 Feb;118(2):193–202. doi: 10.1093/genetics/118.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole S. T., Honoré N. Transcription of the sulA-ompA region of Escherichia coli during the SOS response and the role of an antisense RNA molecule. Mol Microbiol. 1989 Jun;3(6):715–722. doi: 10.1111/j.1365-2958.1989.tb00220.x. [DOI] [PubMed] [Google Scholar]
- Conover R. K., Doolittle W. F. Characterization of a gene involved in histidine biosynthesis in Halobacterium (Haloferax) volcanii: isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J Bacteriol. 1990 Jun;172(6):3244–3249. doi: 10.1128/jb.172.6.3244-3249.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane D. I., Gould S. J. The Pichia pastoris HIS4 gene: nucleotide sequence, creation of a non-reverting his4 deletion mutant, and development of HIS4-based replicating and integrating plasmids. Curr Genet. 1994 Nov-Dec;26(5-6):443–450. doi: 10.1007/BF00309932. [DOI] [PubMed] [Google Scholar]
- Cue D., Beckler G. S., Reeve J. N., Konisky J. Structure and sequence divergence of two archaebacterial genes. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4207–4211. doi: 10.1073/pnas.82.12.4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dall-Larsen T., Klungsoyr L. The binding of specific ligands to adenosine-triphosphate phosphoribosyltransferase. Eur J Biochem. 1976 Oct 1;69(1):195–201. doi: 10.1111/j.1432-1033.1976.tb10873.x. [DOI] [PubMed] [Google Scholar]
- Dall-Larsen T. Regulation of the first step of the histidine biosynthesis in Escherichia coli. Int J Biochem. 1988;20(3):231–235. doi: 10.1016/0020-711x(88)90346-1. [DOI] [PubMed] [Google Scholar]
- Dall-Larsen T. Stopped flow kinetic studies of adenosine triphosphate phosphoribosyl transferase, the first enzyme in the histidine biosynthesis of Escherichia coli. Int J Biochem. 1988;20(8):811–815. doi: 10.1016/0020-711x(88)90069-9. [DOI] [PubMed] [Google Scholar]
- Davidson J. N., Chen K. C., Jamison R. S., Musmanno L. A., Kern C. B. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays. 1993 Mar;15(3):157–164. doi: 10.1002/bies.950150303. [DOI] [PubMed] [Google Scholar]
- Davis L., Williams L. S. Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium. J Bacteriol. 1982 Aug;151(2):867–878. doi: 10.1128/jb.151.2.867-878.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Crombrugghe B., Adhya S., Gottesman M., Pastan I. Effect of Rho on transcription of bacterial operons. Nat New Biol. 1973 Feb 28;241(113):260–264. doi: 10.1038/newbio241260a0. [DOI] [PubMed] [Google Scholar]
- Delorme C., Ehrlich S. D., Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6571–6579. doi: 10.1128/jb.174.20.6571-6579.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Nocera P. P., Blasi F., Di Lauro R., Frunzio R., Bruni C. B. Nucleotide sequence of the attenuator region of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4276–4280. doi: 10.1073/pnas.75.9.4276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donahue T. F., Farabaugh P. J., Fink G. R. The nucleotide sequence of the HIS4 region of yeast. Gene. 1982 Apr;18(1):47–59. doi: 10.1016/0378-1119(82)90055-5. [DOI] [PubMed] [Google Scholar]
- Eccleston E. D., Thayer M. L., Kirkwood S. Mechanisms of action of histidinol dehydrogenase and UDP-Glc dehydrogenase. Evidence that the half-reactions proceed on separate subunits. J Biol Chem. 1979 Nov 25;254(22):11399–11404. [PubMed] [Google Scholar]
- Ely B., Ciesla Z. Internal promoter P2 of the histidine operon of Salmonella typhimurium. J Bacteriol. 1974 Nov;120(2):984–986. doi: 10.1128/jb.120.2.984-986.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKLIN N. C., LURIA S. E. Transduction by bacteriophage P-1 and the properties of the lac genetic region in E. coli and S. dysenteriae. Virology. 1961 Nov;15:299–311. doi: 10.1016/0042-6822(61)90362-2. [DOI] [PubMed] [Google Scholar]
- Fani R., Alifano P., Allotta G., Bazzicalupo M., Carlomagno M. S., Gallori E., Rivellini F., Polsinelli M. The histidine operon of Azospirillum brasilense: organization, nucleotide sequence and functional analysis. Res Microbiol. 1993 Mar-Apr;144(3):187–200. doi: 10.1016/0923-2508(93)90044-3. [DOI] [PubMed] [Google Scholar]
- Fani R., Bazzicalupo M., Damiani G., Bianchi A., Schipani C., Sgaramella V., Polsinelli M. Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mol Gen Genet. 1989 Apr;216(2-3):224–229. doi: 10.1007/BF00334360. [DOI] [PubMed] [Google Scholar]
- Fani R., Liò P., Chiarelli I., Bazzicalupo M. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. J Mol Evol. 1994 May;38(5):489–495. doi: 10.1007/BF00178849. [DOI] [PubMed] [Google Scholar]
- Faxén M., Isaksson L. A. Functional interactions between translation, transcription and ppGpp in growing Escherichia coli. Biochim Biophys Acta. 1994 Oct 18;1219(2):425–434. doi: 10.1016/0167-4781(94)90068-x. [DOI] [PubMed] [Google Scholar]
- Figueroa N., Wills N., Bossi L. Common sequence determinants of the response of a prokaryotic promoter to DNA bending and supercoiling. EMBO J. 1991 Apr;10(4):941–949. doi: 10.1002/j.1460-2075.1991.tb08028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fink G. R., Klopotowski T., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium. IV. A positive selection for polar histidine-requiring mutants from histidine operator constitutive mutants. J Mol Biol. 1967 Nov 28;30(1):81–95. doi: 10.1016/0022-2836(67)90245-8. [DOI] [PubMed] [Google Scholar]
- Fink G. R., Martin R. G. Translation and polarity in the histidine operon. II. Polarity in the histidine operon. J Mol Biol. 1967 Nov 28;30(1):97–107. doi: 10.1016/0022-2836(67)90246-x. [DOI] [PubMed] [Google Scholar]
- Flores A., Casadesús J. Suppression of the pleiotropic effects of HisH and HisF overproduction identifies four novel loci on the Salmonella typhimurium chromosome: osmH, sfiW, sfiX, and sfiY. J Bacteriol. 1995 Sep;177(17):4841–4850. doi: 10.1128/jb.177.17.4841-4850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flores A., Fox M., Casadesús J. The pleiotropic effects of his overexpression in Salmonella typhimurium do not involve AICAR-induced mutagenesis. Mol Gen Genet. 1993 Sep;240(3):360–364. doi: 10.1007/BF00280387. [DOI] [PubMed] [Google Scholar]
- Forster A. C., Altman S. External guide sequences for an RNA enzyme. Science. 1990 Aug 17;249(4970):783–786. doi: 10.1126/science.1697102. [DOI] [PubMed] [Google Scholar]
- Fox M., Frandsen N., D'Ari R. AICAR is not an endogenous mutagen in Escherichia coli. Mol Gen Genet. 1993 Sep;240(3):355–359. doi: 10.1007/BF00280386. [DOI] [PubMed] [Google Scholar]
- Frandsen N., D'Ari R. Excess histidine enzymes cause AICAR-independent filamentation in Escherichia coli. Mol Gen Genet. 1993 Sep;240(3):348–354. doi: 10.1007/BF00280385. [DOI] [PubMed] [Google Scholar]
- Freedman R., Gibson B., Donovan D., Biemann K., Eisenbeis S., Parker J., Schimmel P. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J Biol Chem. 1985 Aug 25;260(18):10063–10068. [PubMed] [Google Scholar]
- Freedman R., Schimmel P. In vitro transcription of the histidine operon. Identification of the his promoter and leader and readthrough transcripts. J Biol Chem. 1981 Nov 10;256(21):10747–10750. [PubMed] [Google Scholar]
- Freese E., Heinze J. E., Galliers E. M. Partial purine deprivation causes sporulation of Bacillus subtilis in the presence of excess ammonia, glucose and phosphate. J Gen Microbiol. 1979 Nov;115(1):193–205. doi: 10.1099/00221287-115-1-193. [DOI] [PubMed] [Google Scholar]
- Frunzio R., Bruni C. B., Blasi F. In vivo and in vitro detection of the leader RNA of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1981 May;78(5):2767–2771. doi: 10.1073/pnas.78.5.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galloway J. L., Platt T. Signals sufficient for rho-dependent transcription termination at trp t' span a region centered 60 base pairs upstream of the earliest 3' end point. J Biol Chem. 1988 Feb 5;263(4):1761–1767. [PubMed] [Google Scholar]
- Geiger J. R., Speyer J. F. A conditional antimutator in E. coli. Mol Gen Genet. 1977 May 20;153(1):87–97. doi: 10.1007/BF01036000. [DOI] [PubMed] [Google Scholar]
- Gibert I., Casadesús J. sulA-independent division inhibition in his-constitutive strains of Salmonella typhimurium. FEMS Microbiol Lett. 1990 Jun 1;57(3):205–210. doi: 10.1016/0378-1097(90)90066-y. [DOI] [PubMed] [Google Scholar]
- Gogarten J. P. Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages. J Mol Evol. 1994 Nov;39(5):541–543. doi: 10.1007/BF00173425. [DOI] [PubMed] [Google Scholar]
- Goldman G. H., Demolder J., Dewaele S., Herrera-Estrella A., Geremia R. A., Van Montagu M., Contreras R. Molecular cloning of the imidazoleglycerolphosphate dehydratase gene of Trichoderma harzianum by genetic complementation in Saccharomyces cerevisiae using a direct expression vector. Mol Gen Genet. 1992 Sep;234(3):481–488. doi: 10.1007/BF00538709. [DOI] [PubMed] [Google Scholar]
- Goto Y., Zalkin H., Keim P. S., Heinrikson R. L. Properties of anthranilate synthetase component II from Pseudomonas putida. J Biol Chem. 1976 Feb 25;251(4):941–949. [PubMed] [Google Scholar]
- Green J. M., Nichols B. P. p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC. J Biol Chem. 1991 Jul 15;266(20):12971–12975. [PubMed] [Google Scholar]
- Grisolia V., Riccio A., Bruni C. B. Structure and function of the internal promoter (hisBp) of the Escherichia coli K-12 histidine operon. J Bacteriol. 1983 Sep;155(3):1288–1296. doi: 10.1128/jb.155.3.1288-1296.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubmeyer C. T., Gray W. R. A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry. 1986 Aug 26;25(17):4778–4784. doi: 10.1021/bi00365a009. [DOI] [PubMed] [Google Scholar]
- Grubmeyer C., Skiadopoulos M., Senior A. E. L-histidinol dehydrogenase, a Zn2+-metalloenzyme. Arch Biochem Biophys. 1989 Aug 1;272(2):311–317. doi: 10.1016/0003-9861(89)90224-5. [DOI] [PubMed] [Google Scholar]
- Gu W., Zhao G., Eddy C., Jensen R. A. Imidazole acetol phosphate aminotransferase in Zymomonas mobilis: molecular genetic, biochemical, and evolutionary analyses. J Bacteriol. 1995 Mar;177(6):1576–1584. doi: 10.1128/jb.177.6.1576-1584.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta R. S., Golding G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993 Dec;37(6):573–582. doi: 10.1007/BF00182743. [DOI] [PubMed] [Google Scholar]
- Gupta R. S., Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994 Dec 1;4(12):1104–1114. doi: 10.1016/s0960-9822(00)00249-9. [DOI] [PubMed] [Google Scholar]
- Görisch H., Hölke W. Binding of histidinal to histidinol dehydrogenase. Eur J Biochem. 1985 Jul 15;150(2):305–308. doi: 10.1111/j.1432-1033.1985.tb09021.x. [DOI] [PubMed] [Google Scholar]
- Görisch H. Steady-state investigations of the mechanism of histidinol dehydrogenase. Biochem J. 1979 Jul 1;181(1):153–157. doi: 10.1042/bj1810153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTMAN P. E., HARTMAN Z., SERMAN D. Complementation mapping by abortive transduction of histidine requiring Salmonella mutants. J Gen Microbiol. 1960 Apr;22:354–368. doi: 10.1099/00221287-22-2-354. [DOI] [PubMed] [Google Scholar]
- HARTMAN P. E., LOPER J. C., SERMAN D. Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. J Gen Microbiol. 1960 Apr;22:323–353. doi: 10.1099/00221287-22-2-323. [DOI] [PubMed] [Google Scholar]
- Haas F, Mitchell M B, Ames B N, Mitchell H K. A Series of Histidineless Mutants of Neurospora Crassa. Genetics. 1952 May;37(3):217–226. doi: 10.1093/genetics/37.3.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartman P. E., Hartman Z., Stahl R. C. Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet. 1971;16:1–34. doi: 10.1016/s0065-2660(08)60352-1. [DOI] [PubMed] [Google Scholar]
- Hartmann R. K., Heinrich J., Schlegl J., Schuster H. Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5822–5826. doi: 10.1073/pnas.92.13.5822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinze J. E., Mitani T., Rich K. E., Freese E. Induction of sporulation by inhibitory purines and related compounds. Biochim Biophys Acta. 1978 Nov 21;521(1):16–26. doi: 10.1016/0005-2787(78)90245-9. [DOI] [PubMed] [Google Scholar]
- Henner D. J., Band L., Flaggs G., Chen E. The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene. 1986;49(1):147–152. doi: 10.1016/0378-1119(86)90394-x. [DOI] [PubMed] [Google Scholar]
- Hikiji T., Ohkuma M., Takagi M., Yano K. An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae. Curr Genet. 1989 Oct;16(4):261–266. doi: 10.1007/BF00422112. [DOI] [PubMed] [Google Scholar]
- Hinnebusch A. G., Fink G. R. Repeated DNA sequences upstream from HIS1 also occur at several other co-regulated genes in Saccharomyces cerevisiae. J Biol Chem. 1983 Apr 25;258(8):5238–5247. [PubMed] [Google Scholar]
- Hinnebusch A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinnebusch A. G. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1990;38:195–240. doi: 10.1016/s0079-6603(08)60712-6. [DOI] [PubMed] [Google Scholar]
- Hinshelwood S., Stoker N. G. Cloning of mycobacterial histidine synthesis genes by complementation of a Mycobacterium smegmatis auxotroph. Mol Microbiol. 1992 Oct;6(19):2887–2895. doi: 10.1111/j.1365-2958.1992.tb01468.x. [DOI] [PubMed] [Google Scholar]
- Hoppe I., Johnston H. M., Biek D., Roth J. R. A refined map of the hisG gene of Salmonella typhimurium. Genetics. 1979 May;92(1):17–26. doi: 10.1093/genetics/92.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz N. H. On the Evolution of Biochemical Syntheses. Proc Natl Acad Sci U S A. 1945 Jun;31(6):153–157. doi: 10.1073/pnas.31.6.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu L. C., Okamoto M., Snell E. E. L-Histidinol phosphate aminotransferase from Salmonella typhimurium. Kinetic behavior and sequence at the pyridoxal-P binding site. Biochimie. 1989 Apr;71(4):477–489. doi: 10.1016/0300-9084(89)90178-8. [DOI] [PubMed] [Google Scholar]
- Hubbard J. S., Stadtman E. R. Regulation of glutamine synthetase. VI. Interactions of inhibitors for Bacillus licheniformis glutamine synthetase. J Bacteriol. 1967 Oct;94(4):1016–1024. doi: 10.1128/jb.94.4.1016-1024.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamoto F. Evidence for premature termination of transcription of the tryptophan operon in polarity mutants of Escherichia coli. Nature. 1970 Oct 17;228(5268):232–235. doi: 10.1038/228232a0. [DOI] [PubMed] [Google Scholar]
- Imamoto F., Ito J., Yanofsky C. Polarity in the tryptophan operon of E. coli. Cold Spring Harb Symp Quant Biol. 1966;31:235–249. doi: 10.1101/sqb.1966.031.01.032. [DOI] [PubMed] [Google Scholar]
- Imamoto F., Kano Y. Inhibition of transcription of the tryptophan operon in Escherichia coli by a block in initiation of translation. Nat New Biol. 1971 Aug 11;232(2):169–173. doi: 10.1038/newbio232169a0. [DOI] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- Jackson E. N., Yanofsky C. Internal promoter of the tryptophan operon of Escherichia coli is located in a structural gene. J Mol Biol. 1972 Aug 21;69(2):307–313. doi: 10.1016/0022-2836(72)90232-x. [DOI] [PubMed] [Google Scholar]
- Jackson E. N., Yanofsky C. Thr region between the operator and first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function. J Mol Biol. 1973 May 5;76(1):89–101. doi: 10.1016/0022-2836(73)90082-x. [DOI] [PubMed] [Google Scholar]
- Jensen R. A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409–425. doi: 10.1146/annurev.mi.30.100176.002205. [DOI] [PubMed] [Google Scholar]
- Johnston H. M., Barnes W. M., Chumley F. G., Bossi L., Roth J. R. Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci U S A. 1980 Jan;77(1):508–512. doi: 10.1073/pnas.77.1.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston H. M., Roth J. R. Histidine mutants requiring adenine: selection of mutants with reduced hisG expression in Salmonella typhimurium. Genetics. 1979 May;92(1):1–15. doi: 10.1093/genetics/92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph E., Danchin A., Ullmann A. Modulation of the lactose operon mRNA turnover by inhibitors of dihydrofolate reductase. Biochem Biophys Res Commun. 1978 Oct 16;84(3):769–776. doi: 10.1016/0006-291x(78)90771-4. [DOI] [PubMed] [Google Scholar]
- Jovanović G., Kostić T., Janković M., Savić D. J. Nucleotide sequence of the Escherichia coli K12 histidine operon revisited. J Mol Biol. 1994 Jun 10;239(3):433–435. doi: 10.1006/jmbi.1994.1384. [DOI] [PubMed] [Google Scholar]
- Kaplan J. B., Nichols B. P. Nucleotide sequence of Escherichia coli pabA and its evolutionary relationship to trp(G)D. J Mol Biol. 1983 Aug 15;168(3):451–468. doi: 10.1016/s0022-2836(83)80295-2. [DOI] [PubMed] [Google Scholar]
- Kasai T. Regulation of the expression of the histidine operon in Salmonella typhimurium. Nature. 1974 Jun 7;249(457):523–527. doi: 10.1038/249523a0. [DOI] [PubMed] [Google Scholar]
- Kirschner K., Bisswanger H. Multifunctional proteins. Annu Rev Biochem. 1976;45:143–166. doi: 10.1146/annurev.bi.45.070176.001043. [DOI] [PubMed] [Google Scholar]
- Klem T. J., Davisson V. J. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. Biochemistry. 1993 May 18;32(19):5177–5186. doi: 10.1021/bi00070a029. [DOI] [PubMed] [Google Scholar]
- Klungsoyr L. Conformational changes and aggregation in phosphoribosyladenosine triphosphate synthetase. Ligand effects on hydrogen exchange and hydrophobic probe uptake. Biochemistry. 1971 Dec 21;10(26):4875–4880. doi: 10.1021/bi00802a007. [DOI] [PubMed] [Google Scholar]
- Klungsoyr L., Hagemen J. H., Fall L., Atkinson D. E. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase. Biochemistry. 1968 Nov;7(11):4035–4040. doi: 10.1021/bi00851a034. [DOI] [PubMed] [Google Scholar]
- Klungsöyr L., Kryvi H. Sedimentation behaviour of phosphoribosyladenosine triphosphate synthetase. Effects of substrates and modifiers. Biochim Biophys Acta. 1971 Feb 10;227(2):327–336. doi: 10.1016/0005-2744(71)90064-7. [DOI] [PubMed] [Google Scholar]
- Kolter R., Yanofsky C. Attenuation in amino acid biosynthetic operons. Annu Rev Genet. 1982;16:113–134. doi: 10.1146/annurev.ge.16.120182.000553. [DOI] [PubMed] [Google Scholar]
- Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuenzler M., Balmelli T., Egli C. M., Paravicini G., Braus G. H. Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae. J Bacteriol. 1993 Sep;175(17):5548–5558. doi: 10.1128/jb.175.17.5548-5558.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3009–3013. doi: 10.1073/pnas.90.7.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEUPOLD U. Studies on recombination in Schizosaccharomyces pombe. Cold Spring Harb Symp Quant Biol. 1958;23:161–170. doi: 10.1101/sqb.1958.023.01.020. [DOI] [PubMed] [Google Scholar]
- LOPER J. C., ADAMS E. PURIFICATION AND PROPERTIES OF HISTIDINOL DEHYDROGENASE FROM SALMONELLA TYPHIMURIUM. J Biol Chem. 1965 Feb;240:788–795. [PubMed] [Google Scholar]
- LOPER J. C. Enzyme complementation in mixed extracts of mutants from the Salmonella histidine B locus. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1440–1450. doi: 10.1073/pnas.47.9.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landick R., Carey J., Yanofsky C. Detection of transcription-pausing in vivo in the trp operon leader region. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1507–1511. doi: 10.1073/pnas.84.6.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landick R., Yanofsky C. Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex. J Mol Biol. 1987 Jul 20;196(2):363–377. doi: 10.1016/0022-2836(87)90697-8. [DOI] [PubMed] [Google Scholar]
- Landick R., Yanofsky C. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J Biol Chem. 1984 Sep 25;259(18):11550–11555. [PubMed] [Google Scholar]
- Lee D. N., Landick R. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol. 1992 Dec 5;228(3):759–777. doi: 10.1016/0022-2836(92)90862-e. [DOI] [PubMed] [Google Scholar]
- Lee D. N., Phung L., Stewart J., Landick R. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J Biol Chem. 1990 Sep 5;265(25):15145–15153. [PubMed] [Google Scholar]
- Legerton T. L., Yanofsky C. Cloning and characterization of the multifunctional his-3 gene of Neurospora crassa. Gene. 1985;39(2-3):129–140. doi: 10.1016/0378-1119(85)90306-3. [DOI] [PubMed] [Google Scholar]
- Limauro D., Avitabile A., Cappellano C., Puglia A. M., Bruni C. B. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene. 1990 May 31;90(1):31–41. doi: 10.1016/0378-1119(90)90436-u. [DOI] [PubMed] [Google Scholar]
- Limauro D., Avitabile A., Puglia A. M., Bruni C. B. Further characterization of the histidine gene cluster of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis of hisD. Res Microbiol. 1992 Sep;143(7):683–693. doi: 10.1016/0923-2508(92)90063-t. [DOI] [PubMed] [Google Scholar]
- MILLER S. L. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528–529. doi: 10.1126/science.117.3046.528. [DOI] [PubMed] [Google Scholar]
- Malone R. E., Kim S., Bullard S. A., Lundquist S., Hutchings-Crow L., Cramton S., Lutfiyya L., Lee J. Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics. 1994 May;137(1):5–18. doi: 10.1093/genetics/137.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolies M. N., Goldberger R. F. Isolation of the fourth (isomerase) of histidine biosynthesis from Salmonella typhimurium. J Biol Chem. 1966 Jul 25;241(14):3262–3269. [PubMed] [Google Scholar]
- Margolies M. N., Goldberger R. F. Physical and chemical characterization of the isomerase of histidine biosynthesis in Salmonella typhimurium. J Biol Chem. 1967 Jan 25;242(2):256–264. [PubMed] [Google Scholar]
- Martin R. G., Silbert D. F., Smith W. E., Whitfield H. J., Jr Polarity in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):357–369. doi: 10.1016/0022-2836(66)90104-5. [DOI] [PubMed] [Google Scholar]
- Martin R. G., Talal N. Translation and polarity in the histidine operon. IV. Relation of polarity to map position in hisC. J Mol Biol. 1968 Sep 14;36(2):219–229. doi: 10.1016/0022-2836(68)90377-x. [DOI] [PubMed] [Google Scholar]
- Martin R. G., Whitfield H. J., Jr, Berkowitz D. B., Voll M. J. A molecular model of the phenomenon of polarity. Cold Spring Harb Symp Quant Biol. 1966;31:215–220. doi: 10.1101/sqb.1966.031.01.029. [DOI] [PubMed] [Google Scholar]
- Mathews C. K. The cell-bag of enzymes or network of channels? J Bacteriol. 1993 Oct;175(20):6377–6381. doi: 10.1128/jb.175.20.6377-6381.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McSwiggen J. A., Bear D. G., von Hippel P. H. Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies. J Mol Biol. 1988 Feb 20;199(4):609–622. doi: 10.1016/0022-2836(88)90305-1. [DOI] [PubMed] [Google Scholar]
- Mehta P. K., Hale T. I., Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem. 1989 Dec 8;186(1-2):249–253. doi: 10.1111/j.1432-1033.1989.tb15202.x. [DOI] [PubMed] [Google Scholar]
- Mitani T., Heinze J. E., Freese E. Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1118–1125. doi: 10.1016/s0006-291x(77)80094-6. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Guertin M. Regulation of mRNA utilization and degradation by amino-acid starvation. Nat New Biol. 1971 Aug 11;232(2):165–169. doi: 10.1038/newbio232165a0. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Primakoff P. Relief of polarity in E. coli by "suA". Nature. 1970 Apr 4;226(5240):28–31. doi: 10.1038/226028a0. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Yanofsky C. Polarity and the degradation of mRNA. Nature. 1969 Oct 25;224(5217):329–331. doi: 10.1038/224329a0. [DOI] [PubMed] [Google Scholar]
- Mortimer R. K., Romano P., Suzzi G., Polsinelli M. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast. 1994 Dec;10(12):1543–1552. doi: 10.1002/yea.320101203. [DOI] [PubMed] [Google Scholar]
- Mozier N. M., Walsh M. P., Pearson J. D. Characterization of a novel zinc binding site of protein kinase C inhibitor-1. FEBS Lett. 1991 Feb 11;279(1):14–18. doi: 10.1016/0014-5793(91)80238-x. [DOI] [PubMed] [Google Scholar]
- Mulligan M. E., Hawley D. K., Entriken R., McClure W. R. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):789–800. doi: 10.1093/nar/12.1part2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray M. L., Hartman P. E. Overproduction of hisH and hisF gene products leads to inhibition of cell cell division in Salmonella. Can J Microbiol. 1972 May;18(5):671–681. doi: 10.1139/m72-105. [DOI] [PubMed] [Google Scholar]
- Murray V. 5-Amino-4-imidazolecarboxamide is a mutagen in E. coli. Mutat Res. 1987 Feb;190(2):89–94. doi: 10.1016/0165-7992(87)90037-6. [DOI] [PubMed] [Google Scholar]
- Nagai A., Ward E., Beck J., Tada S., Chang J. Y., Scheidegger A., Ryals J. Structural and functional conservation of histidinol dehydrogenase between plants and microbes. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4133–4137. doi: 10.1073/pnas.88.10.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman J. D., Diebold R. J., Schultz B. W., Noel K. D. Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol. 1994 Jun;176(11):3286–3294. doi: 10.1128/jb.176.11.3286-3294.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman J. D., Schultz B. W., Noel K. D. Dissection of Nodule Development by Supplementation of Rhizobium leguminosarum biovar phaseoli Purine Auxotrophs with 4-Aminoimidazole-5-Carboxamide Riboside. Plant Physiol. 1992 Jun;99(2):401–408. doi: 10.1104/pp.99.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton W. A., Beckwith J. R., Zipser D., Brenner S. Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):290–296. doi: 10.1016/s0022-2836(65)80250-9. [DOI] [PubMed] [Google Scholar]
- Nichols B. P., Miozzari G. F., van Cleemput M., Bennett G. N., Yanofsky C. Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol. 1980 Oct 5;142(4):503–517. doi: 10.1016/0022-2836(80)90260-0. [DOI] [PubMed] [Google Scholar]
- Nishiwaki K., Hayashi N., Irie S., Chung D. H., Harashima S., Oshima Y. Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis. Mol Gen Genet. 1987 Jun;208(1-2):159–167. doi: 10.1007/BF00330437. [DOI] [PubMed] [Google Scholar]
- Nègre D., Cortay J. C., Donini P., Cozzone A. J. Relationship between guanosine tetraphosphate and accuracy of translation in Salmonella typhimurium. Biochemistry. 1989 Feb 21;28(4):1814–1819. doi: 10.1021/bi00430a058. [DOI] [PubMed] [Google Scholar]
- O'Byrne C. P., Ní Bhriain N., Dorman C. J. The DNA supercoiling-sensitive expression of the Salmonella typhimurium his operon requires the his attenuator and is modulated by anaerobiosis and by osmolarity. Mol Microbiol. 1992 Sep;6(17):2467–2476. doi: 10.1111/j.1365-2958.1992.tb01423.x. [DOI] [PubMed] [Google Scholar]
- Oppenheim D. S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980 Aug;95(4):785–795. doi: 10.1093/genetics/95.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oró J., Basile B., Cortes S., Shen C., Yamrom T. The prebiotic synthesis and catalytic role of imidazoles and other condensing agents. Orig Life. 1984;14(1-4):237–242. doi: 10.1007/BF00933663. [DOI] [PubMed] [Google Scholar]
- Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
- Parsons S. M., Koshland D. E., Jr A rapid isolation of phosphoribosyladenosine triphosphate synthetase and comparison to native enzyme. J Biol Chem. 1974 Jul 10;249(13):4104–4109. [PubMed] [Google Scholar]
- Parsons S. M., Koshland D. E., Jr Multiple aggregation states of phosphoribosyladenosine triphosphate synthetase. J Biol Chem. 1974 Jul 10;249(13):4119–4126. [PubMed] [Google Scholar]
- Petersen C. Control of functional mRNA stability in bacteria: multiple mechanisms of nucleolytic and non-nucleolytic inactivation. Mol Microbiol. 1992 Feb;6(3):277–282. doi: 10.1111/j.1365-2958.1992.tb01469.x. [DOI] [PubMed] [Google Scholar]
- Petersen H. U., Danchin A., Grunberg-Manago M. Toward an understanding of the formylation of initiator tRNA methionine in prokaryotic protein synthesis. I. In vitro studies of the 30S and 70S ribosomal-tRNA complex. Biochemistry. 1976 Apr 6;15(7):1357–1362. doi: 10.1021/bi00652a001. [DOI] [PubMed] [Google Scholar]
- Petersen H. U., Danchin A., Grunberg-Manago M. Toward an understanding of the formylation of initiator tRNA methionine in prokaryotic protein synthesis. II. A two-state model for the 70S ribosome. Biochemistry. 1976 Apr 6;15(7):1362–1369. doi: 10.1021/bi00652a002. [DOI] [PubMed] [Google Scholar]
- Petersen H. U., Joseph E., Ullmann A., Danchin A. Formylation of initiator tRNA methionine in procaryotic protein synthesis: in vivo polarity in lactose operon expression. J Bacteriol. 1978 Aug;135(2):453–459. doi: 10.1128/jb.135.2.453-459.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piette J., Nyunoya H., Lusty C. J., Cunin R., Weyens G., Crabeel M., Charlier D., Glansdorff N., Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4134–4138. doi: 10.1073/pnas.81.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rechler M. M., Bruni C. B., Martin R. G., Terry W. An intercistronic region in the histidine operon of Salmonella typhimurium. J Mol Biol. 1972 Aug 28;69(3):427–452. doi: 10.1016/0022-2836(72)90256-2. [DOI] [PubMed] [Google Scholar]
- Riccio A., Bruni C. B., Rosenberg M., Gottesman M., McKenney K., Blasi F. Regulation of single and multicopy his operons in Escherichia coli. J Bacteriol. 1985 Sep;163(3):1172–1179. doi: 10.1128/jb.163.3.1172-1179.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. P. Preventing the synthesis of unused transcripts by Rho factor. Cell. 1991 Mar 22;64(6):1047–1049. doi: 10.1016/0092-8674(91)90257-y. [DOI] [PubMed] [Google Scholar]
- Rieder G., Merrick M. J., Castorph H., Kleiner D. Function of hisF and hisH gene products in histidine biosynthesis. J Biol Chem. 1994 May 20;269(20):14386–14390. [PubMed] [Google Scholar]
- Riggs D. L., Mueller R. D., Kwan H. S., Artz S. W. Promoter domain mediates guanosine tetraphosphate activation of the histidine operon. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9333–9337. doi: 10.1073/pnas.83.24.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riggs D., Artz S. The hisD-hisC gene border of the Salmonella typhimurium histidine operon. Mol Gen Genet. 1984;196(3):526–529. doi: 10.1007/BF00436203. [DOI] [PubMed] [Google Scholar]
- Rivellini F., Alifano P., Piscitelli C., Blasi V., Bruni C. B., Carlomagno M. S. A cytosine- over guanosine-rich sequence in RNA activates rho-dependent transcription termination. Mol Microbiol. 1991 Dec;5(12):3049–3054. doi: 10.1111/j.1365-2958.1991.tb01864.x. [DOI] [PubMed] [Google Scholar]
- Robertson M. P., Miller S. L. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science. 1995 May 5;268(5211):702–705. doi: 10.1126/science.7732378. [DOI] [PubMed] [Google Scholar]
- Rodriguez R. L., West R. W., Jr Histidine operon control region of Klebsiella pneumoniae: analysis with an Escherichia coli promoter-probe plasmid vector. J Bacteriol. 1984 Mar;157(3):764–771. doi: 10.1128/jb.157.3.764-771.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez R. L., West R. W., Tait R. C., Jaynes J. M., Shanmugam K. T. Isolation and characterization of the hisG and hisD genes of Klebsiella pneumoniae. Gene. 1981 Dec;16(1-3):317–320. doi: 10.1016/0378-1119(81)90087-1. [DOI] [PubMed] [Google Scholar]
- Rohlman C. E., Matthews R. G. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli. J Bacteriol. 1990 Dec;172(12):7200–7210. doi: 10.1128/jb.172.12.7200-7210.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium II. Histidine regulatory mutants having altered histidyl-tRNA synthetase. J Mol Biol. 1966 Dec 28;22(2):325–333. doi: 10.1016/0022-2836(66)90135-5. [DOI] [PubMed] [Google Scholar]
- Roth J. R., Antón D. N., Hartman P. E. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J Mol Biol. 1966 Dec 28;22(2):305–323. doi: 10.1016/0022-2836(66)90134-3. [DOI] [PubMed] [Google Scholar]
- Roth J. R., Hartman P. E. Heterogeneity in P22 transducing particles. Virology. 1965 Nov;27(3):297–307. doi: 10.1016/0042-6822(65)90109-1. [DOI] [PubMed] [Google Scholar]
- Rudd K. E., Menzel R. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc Natl Acad Sci U S A. 1987 Jan;84(2):517–521. doi: 10.1073/pnas.84.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPPARD D. E. MUTANTS OF SALMONELLA TYPHIMURIUM RESISTANT TO FEEDBACK INHIBITION BY L-HISTIDINE. Genetics. 1964 Oct;50:611–623. doi: 10.1093/genetics/50.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH D. W., AMES B. N. INTERMEDIATES IN THE EARLY STEPS OF HISTIDINE BIOSYNTHESIS. J Biol Chem. 1964 Jun;239:1848–1855. [PubMed] [Google Scholar]
- SMITH D. W., AMES B. N. PHOSPHORIBOSYLADENOSINE MONOPHOSPHATE, AN INTERMEDIATE IN HISTIDINE BIOSYNTHESIS. J Biol Chem. 1965 Jul;240:3056–3063. [PubMed] [Google Scholar]
- Sabina R. L., Holmes E. W., Becker M. A. The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science. 1984 Mar 16;223(4641):1193–1195. doi: 10.1126/science.6199843. [DOI] [PubMed] [Google Scholar]
- Sabina R. L., Patterson D., Holmes E. W. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem. 1985 May 25;260(10):6107–6114. [PubMed] [Google Scholar]
- Sampei G., Mizobuchi K. The organization of the purL gene encoding 5'-phosphoribosylformylglycinamide amidotransferase of Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):21230–21238. [PubMed] [Google Scholar]
- Schendel F. J., Mueller E., Stubbe J., Shiau A., Smith J. M. Formylglycinamide ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, isolation, and characterization. Biochemistry. 1989 Mar 21;28(6):2459–2471. doi: 10.1021/bi00432a017. [DOI] [PubMed] [Google Scholar]
- Schmid M. B., Roth J. R. Internal promoters of the his operon in Salmonella typhimurium. J Bacteriol. 1983 Feb;153(2):1114–1119. doi: 10.1128/jb.153.2.1114-1119.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shand R. F., Blum P. H., Holzschu D. L., Urdea M. S., Artz S. W. Mutational analysis of the histidine operon promoter of Salmonella typhimurium. J Bacteriol. 1989 Nov;171(11):6330–6337. doi: 10.1128/jb.171.11.6330-6337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shand R. F., Blum P. H., Mueller R. D., Riggs D. L., Artz S. W. Correlation between histidine operon expression and guanosine 5'-diphosphate-3'-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium. J Bacteriol. 1989 Feb;171(2):737–743. doi: 10.1128/jb.171.2.737-743.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen C., Lazcano A., Oro J. The enhancement activities of histidyl-histidine in some prebiotic reactions. J Mol Evol. 1990;31:445–452. doi: 10.1007/BF02102070. [DOI] [PubMed] [Google Scholar]
- Shen C., Mills T., Oro J. Prebiotic synthesis of histidyl-histidine. J Mol Evol. 1990 Sep;31(3):175–179. doi: 10.1007/BF02109493. [DOI] [PubMed] [Google Scholar]
- Shen C., Yang L., Miller S. L., Oro J. Prebiotic synthesis of histidine. J Mol Evol. 1990 Sep;31(3):167–174. doi: 10.1007/BF02109492. [DOI] [PubMed] [Google Scholar]
- Shen C., Yang L., Miller S. L., Oró J. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine. Orig Life Evol Biosph. 1987;17(3-4):295–305. doi: 10.1007/BF02386469. [DOI] [PubMed] [Google Scholar]
- Sheridan R. P., Venkataraghavan R. A systematic search for protein signature sequences. Proteins. 1992 Sep;14(1):16–28. doi: 10.1002/prot.340140105. [DOI] [PubMed] [Google Scholar]
- Shioi J. I., Galloway R. J., Niwano M., Chinnock R. E., Taylor B. L. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982 Jul 25;257(14):7969–7975. [PubMed] [Google Scholar]
- Silbert D. F., Fink G. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol. 1966 Dec 28;22(2):335–347. doi: 10.1016/0022-2836(66)90136-7. [DOI] [PubMed] [Google Scholar]
- Stanssens P., Remaut E., Fiers W. Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell. 1986 Mar 14;44(5):711–718. doi: 10.1016/0092-8674(86)90837-8. [DOI] [PubMed] [Google Scholar]
- Stephens J. C., Artz S. W., Ames B. N. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393. doi: 10.1073/pnas.72.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stougaard J., Kennedy C. Regulation of nitrogenase synthesis in histidine auxotrophs of Klebsiella pneumoniae with altered levels of adenylate nucleotides. J Bacteriol. 1988 Jan;170(1):250–257. doi: 10.1128/jb.170.1.250-257.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struhl K. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 1985 Dec 9;13(23):8587–8601. doi: 10.1093/nar/13.23.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taschner P. E., Huls P. G., Pas E., Woldringh C. L. Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli during temperature shift experiments. J Bacteriol. 1988 Apr;170(4):1533–1540. doi: 10.1128/jb.170.4.1533-1540.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tebar A. R., Fernandez V. M., Martin Del Rio R., Ballesteros A. O. Studies on the quaternary structure of the first enzyme for histidine biosynthesis. Experientia. 1973 Dec;29(12):1477–1479. doi: 10.1007/BF01943865. [DOI] [PubMed] [Google Scholar]
- Teng H., Segura E., Grubmeyer C. Conserved cysteine residues of histidinol dehydrogenase are not involved in catalysis. Novel chemistry required for enzymatic aldehyde oxidation. J Biol Chem. 1993 Jul 5;268(19):14182–14188. [PubMed] [Google Scholar]
- Tiboni O., Cammarano P., Sanangelantoni A. M. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol. 1993 May;175(10):2961–2969. doi: 10.1128/jb.175.10.2961-2969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiedeman A. A., Smith J. M., Zalkin H. Nucleotide sequence of the guaA gene encoding GMP synthetase of Escherichia coli K12. J Biol Chem. 1985 Jul 25;260(15):8676–8679. [PubMed] [Google Scholar]
- Toone W. M., Rudd K. E., Friesen J. D. Mutations causing aminotriazole resistance and temperature sensitivity reside in gyrB, which encodes the B subunit of DNA gyrase. J Bacteriol. 1992 Aug;174(16):5479–5481. doi: 10.1128/jb.174.16.5479-5481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travers A. A. Conserved features of coordinately regulated E. coli promoters. Nucleic Acids Res. 1984 Mar 26;12(6):2605–2618. doi: 10.1093/nar/12.6.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trieu-Cuot P., Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene. 1983 Sep;23(3):331–341. doi: 10.1016/0378-1119(83)90022-7. [DOI] [PubMed] [Google Scholar]
- Trotta P. P., Pinkus L. M., Haschemeyer R. H., Meister A. Reversible dissociation of the monomer of glutamine-dependent carbamyl phosphate synthetase into catalytically active heavy and light subunits. J Biol Chem. 1974 Jan 25;249(2):492–499. [PubMed] [Google Scholar]
- Tébar A. R., Fernández V. M., Martíndelrío R., Ballesteros A. O. Fluorescence studies of phosphoribosyladenosine triphosphate synthetase of Escherichia coli. FEBS Lett. 1975 Feb 1;50(2):239–242. doi: 10.1016/0014-5793(75)80497-2. [DOI] [PubMed] [Google Scholar]
- UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
- Venetianer P. Level of messenger RNA transcribed from the histidine operon in repressed, derepressed and histidine-starved Salmonella typhimurium. J Mol Biol. 1969 Oct 28;45(2):375–384. doi: 10.1016/0022-2836(69)90112-0. [DOI] [PubMed] [Google Scholar]
- Venetianer P. Preferential synthesis of the messenger RNA of the histidine operon during histidine starvation. Biochem Biophys Res Commun. 1968 Dec 30;33(6):959–963. doi: 10.1016/0006-291x(68)90406-3. [DOI] [PubMed] [Google Scholar]
- Verde P., Frunzio R., di Nocera P. P., Blasi F., Bruni C. B. Identification, nucleotide sequence and expression of the regulatory region of the histidine operon of Escherichia coli K-12. Nucleic Acids Res. 1981 May 11;9(9):2075–2086. doi: 10.1093/nar/9.9.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voll M. J., Appella E., Martin R. G. Purification and composition studies of phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis. J Biol Chem. 1967 Apr 25;242(8):1760–1767. [PubMed] [Google Scholar]
- Wachi M., Doi M., Tamaki S., Park W., Nakajima-Iijima S., Matsuhashi M. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J Bacteriol. 1987 Nov;169(11):4935–4940. doi: 10.1128/jb.169.11.4935-4940.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waley S. G. Some aspects of the evolution of metabolic pathways. Comp Biochem Physiol. 1969 Jul 1;30(1):1–11. doi: 10.1016/0010-406x(69)91293-6. [DOI] [PubMed] [Google Scholar]
- Wang D., Meier T. I., Chan C. L., Feng G., Lee D. N., Landick R. Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell. 1995 May 5;81(3):341–350. doi: 10.1016/0092-8674(95)90387-9. [DOI] [PubMed] [Google Scholar]
- Weber A. L., Miller S. L. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol. 1981;17(5):273–284. doi: 10.1007/BF01795749. [DOI] [PubMed] [Google Scholar]
- Wei T. F., Ramasubramanian T. S., Pu F., Golden J. W. Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection. J Bacteriol. 1993 Jul;175(13):4025–4035. doi: 10.1128/jb.175.13.4025-4035.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil C. F., Beckler G. S., Reeve J. N. Structure and organization of the hisA gene of the thermophilic archaebacterium Methanococcus thermolithotrophicus. J Bacteriol. 1987 Oct;169(10):4857–4860. doi: 10.1128/jb.169.10.4857-4860.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstock K. G., Strathern J. N. Molecular genetics in Saccharomyces kluyveri: the HIS3 homolog and its use as a selectable marker gene in S. kluyveri and Saccharomyces cerevisiae. Yeast. 1993 Apr;9(4):351–361. doi: 10.1002/yea.320090405. [DOI] [PubMed] [Google Scholar]
- Weng M., Makaroff C. A., Zalkin H. Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem. 1986 Apr 25;261(12):5568–5574. [PubMed] [Google Scholar]
- White D. H., Erickson J. C. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment. J Mol Evol. 1980 Dec;16(3-4):279–290. doi: 10.1007/BF01804979. [DOI] [PubMed] [Google Scholar]
- White H. B., 3rd Coenzymes as fossils of an earlier metabolic state. J Mol Evol. 1976 Mar 29;7(2):101–104. doi: 10.1007/BF01732468. [DOI] [PubMed] [Google Scholar]
- Whitfield H. J., Jr Purification and properties of the wild type and a feedback-resistant phosphoribosyladenosine triphosphate pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis in Salmonella typhimurium. J Biol Chem. 1971 Feb 25;246(4):899–908. [PubMed] [Google Scholar]
- Winkler M. E., Roth D. J., Hartman P. E. Promoter- and attenuator-related metabolic regulation of the Salmonella typhimurium histidine operon. J Bacteriol. 1978 Feb;133(2):830–843. doi: 10.1128/jb.133.2.830-843.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler M. E., Yanofsky C. Pausing of RNA polymerase during in vitro transcription of the tryptophan operon leader region. Biochemistry. 1981 Jun 23;20(13):3738–3744. doi: 10.1021/bi00516a011. [DOI] [PubMed] [Google Scholar]
- Yanofsky C. Attenuation in the control of expression of bacterial operons. Nature. 1981 Feb 26;289(5800):751–758. doi: 10.1038/289751a0. [DOI] [PubMed] [Google Scholar]
- Ycas M. On earlier states of the biochemical system. J Theor Biol. 1974 Mar;44(1):145–160. doi: 10.1016/s0022-5193(74)80035-4. [DOI] [PubMed] [Google Scholar]
- Ye Q. Z., Liu J., Walsh C. T. p-Aminobenzoate synthesis in Escherichia coli: purification and characterization of PabB as aminodeoxychorismate synthase and enzyme X as aminodeoxychorismate lyase. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9391–9395. doi: 10.1073/pnas.87.23.9391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zipser D. Polar mutations and operon function. Nature. 1969 Jan 4;221(5175):21–25. doi: 10.1038/221021a0. [DOI] [PubMed] [Google Scholar]