Full Text
The Full Text of this article is available as a PDF (327.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol. 1965;7:35–80. doi: 10.1016/s0065-2164(08)70383-6. [DOI] [PubMed] [Google Scholar]
- Berman M. H., Frazer A. C. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl Environ Microbiol. 1992 Mar;58(3):925–931. doi: 10.1128/aem.58.3.925-931.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt F. H., Bill E., Trautwein A. X., Twilfer H. 4-Methoxybenzoate monooxygenase from Pseudomonas putida: isolation, biochemical properties, substrate specificity, and reaction mechanisms of the enzyme components. Methods Enzymol. 1988;161:281–294. doi: 10.1016/0076-6879(88)61031-7. [DOI] [PubMed] [Google Scholar]
- Bernhardt F. H., Pachowsky H., Staudinger H. A 4-methoxybenzoate O-demethylase from Pseudomonas putida. A new type of monooxygenase system. Eur J Biochem. 1975 Sep 1;57(1):241–256. doi: 10.1111/j.1432-1033.1975.tb02296.x. [DOI] [PubMed] [Google Scholar]
- Butler E. G., Tanaka T., Ichida T., Maruyama H., Leber A. P., Williams G. M. Induction of hepatic peroxisome proliferation in mice by lactofen, a diphenyl ether herbicide. Toxicol Appl Pharmacol. 1988 Mar 30;93(1):72–80. doi: 10.1016/0041-008x(88)90026-9. [DOI] [PubMed] [Google Scholar]
- Cartwright N. J., Holdom K. S., Broadbent D. A. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases. Microbios. 1971 Mar;3(10):113–130. [PubMed] [Google Scholar]
- Cartwright N. J., Smith A. R. Bacterial attack on phenolic ethers: An enzyme system demethylating vanillic acid. Biochem J. 1967 Mar;102(3):826–841. doi: 10.1042/bj1020826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choquet C. G., Patel G. B., Beveridge T. J., Sprott G. D. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol. 1994 Nov;42(2-3):375–384. doi: 10.1007/BF00902745. [DOI] [PubMed] [Google Scholar]
- Crawford R. L., Kirk T. K., Harkin J. M., McCoy E. Bacterial cleavage of an arylglycerol- -aryl ether bond. Appl Microbiol. 1973 Feb;25(2):322–324. doi: 10.1128/am.25.2.322-324.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L., McCoy E., Harkin J. M., Kirk T. K., Obst J. R. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl Microbiol. 1973 Aug;26(2):176–184. doi: 10.1128/am.26.2.176-184.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeWeerd K. A., Saxena A., Nagle D. P., Jr, Suflita J. M. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol. 1988 May;54(5):1237–1242. doi: 10.1128/aem.54.5.1237-1242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doré J., Bryant M. P. Metabolism of One-Carbon Compounds by the Ruminal Acetogen Syntrophococcus sucromutans. Appl Environ Microbiol. 1990 Apr;56(4):984–989. doi: 10.1128/aem.56.4.984-989.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer D. F., Tiedje J. M. Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Appl Environ Microbiol. 1986 Oct;52(4):852–856. doi: 10.1128/aem.52.4.852-856.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekelund R., Bergman A., Granmo A., Berggren M. Bioaccumulation of 4-nonylphenol in marine animals--a re-evaluation. Environ Pollut. 1990;64(2):107–120. doi: 10.1016/0269-7491(90)90108-o. [DOI] [PubMed] [Google Scholar]
- Eltis L. D., Karlson U., Timmis K. N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. Eur J Biochem. 1993 Apr 1;213(1):211–216. doi: 10.1111/j.1432-1033.1993.tb17750.x. [DOI] [PubMed] [Google Scholar]
- Evans W. C., Smith B. S., Fernley H. N., Davies J. I. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J. 1971 May;122(4):543–551. doi: 10.1042/bj1220543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINCHER E. L., PAYNE W. J. Bacterial utilization of ether glycols. Appl Microbiol. 1962 Nov;10:542–547. doi: 10.1128/am.10.6.542-547.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazer A. C., Young L. Y. Anaerobic c(1) metabolism of the o-methyl-C-labeled substituent of vanillate. Appl Environ Microbiol. 1986 Jan;51(1):84–87. doi: 10.1128/aem.51.1.84-87.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frings J., Schink B. Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium. Arch Microbiol. 1994;162(3):199–204. doi: 10.1007/BF00314475. [DOI] [PubMed] [Google Scholar]
- Frings J., Schramm E., Schink B. Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. Appl Environ Microbiol. 1992 Jul;58(7):2164–2167. doi: 10.1128/aem.58.7.2164-2167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamar Y., Gaunt J. K. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage. Biochem J. 1971 May;122(4):527–531. doi: 10.1042/bj1220527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaunt J. K., Evans W. C. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway. Biochem J. 1971 May;122(4):519–526. doi: 10.1042/bj1220519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giger W., Brunner P. H., Schaffner C. 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science. 1984 Aug 10;225(4662):623–625. doi: 10.1126/science.6740328. [DOI] [PubMed] [Google Scholar]
- Haines J. R., Alexander M. Microbial degradation of polyethylene glycols. Appl Microbiol. 1975 May;29(5):621–625. doi: 10.1128/am.29.5.621-625.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hales S. G., Dodgson K. S., White G. F., Jones N., Watson G. K. Initial Stages in the Biodegradation of the Surfactant Sodium Dodecyltriethoxy Sulfate by Pseudomonas sp. Strain DES1. Appl Environ Microbiol. 1982 Oct;44(4):790–800. doi: 10.1128/aem.44.4.790-800.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hales S. G., Watson G. K., Dodgson K. S., White G. F. A comparative study of the biodegradation of the surfactant sodium dodecyltriethoxy sulphate by four detergent-degrading bacteria. J Gen Microbiol. 1986 Apr;132(4):953–961. doi: 10.1099/00221287-132-4-953. [DOI] [PubMed] [Google Scholar]
- Hanify J. A., Metcalf P., Nobbs C. L., Worsley K. J. Aerial spraying of 2,4,5-T and human birth malformations: an epidemiological investigation. Science. 1981 Apr 17;212(4492):349–351. doi: 10.1126/science.7209535. [DOI] [PubMed] [Google Scholar]
- Jenkins L. D., Cook K. A., Cain R. B. Microbial degradation of polyethylene glycols. J Appl Bacteriol. 1979 Aug;47(1):75–85. doi: 10.1111/j.1365-2672.1979.tb01171.x. [DOI] [PubMed] [Google Scholar]
- Karlson U., Dwyer D. F., Hooper S. W., Moore E. R., Timmis K. N., Eltis L. D. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol. 1993 Mar;175(5):1467–1474. doi: 10.1128/jb.175.5.1467-1474.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai F., Kimura T., Fukaya M., Tani Y., Ogata K., Ueno T., Fukami H. Bacterial oxidation of polyethylene glycol. Appl Environ Microbiol. 1978 Apr;35(4):679–684. doi: 10.1128/aem.35.4.679-684.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai F., Kimura T., Tani Y., Yamada H., Kurachi M. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol. 1980 Oct;40(4):701–705. doi: 10.1128/aem.40.4.701-705.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbane J. J., Chatterjee D. K., Karns J. S., Kellogg S. T., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Jul;44(1):72–78. doi: 10.1128/aem.44.1.72-78.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreft J. U., Schink B. O-demethylation by the homoacetogenic anaerobe Holophaga foetida studied by a new photometric methylation assay using electrochemically produced cob(I)alamin. Eur J Biochem. 1994 Dec 15;226(3):945–951. doi: 10.1111/j.1432-1033.1994.00945.x. [DOI] [PubMed] [Google Scholar]
- Lappin H. M., Greaves M. P., Slater J. H. Degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic Acid] by a synergistic microbial community. Appl Environ Microbiol. 1985 Feb;49(2):429–433. doi: 10.1128/aem.49.2.429-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loos M. A., Roberts R. N., Alexander M. Formation of 2,4-dichlorophenol and 2,4-dichloroanisole from 2,4-dichlorophen-oxyacetate by Arthrobacter sp. Can J Microbiol. 1967 Jun;13(6):691–699. doi: 10.1139/m67-091. [DOI] [PubMed] [Google Scholar]
- Loos M. A., Roberts R. N., Alexander M. Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. Can J Microbiol. 1967 Jun;13(6):679–690. doi: 10.1139/m67-090. [DOI] [PubMed] [Google Scholar]
- MACRAE I. C., ALEXANDER M., ROVIRA A. D. THE DECOMPOSITION OF 4-(2,4-DICHLOROPHENOXY) BUTYRIC ACID BY FLAVOBACTERIUM SP. J Gen Microbiol. 1963 Jul;32:69–76. doi: 10.1099/00221287-32-1-69. [DOI] [PubMed] [Google Scholar]
- Maki H., Masuda N., Fujiwara Y., Ike M., Fujita M. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Appl Environ Microbiol. 1994 Jul;60(7):2265–2271. doi: 10.1128/aem.60.7.2265-2271.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masai E., Katayama Y., Kubota S., Kawai S., Yamasaki M., Morohoshi N. A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 1993 May 24;323(1-2):135–140. doi: 10.1016/0014-5793(93)81465-c. [DOI] [PubMed] [Google Scholar]
- Masai E., Katayama Y., Nishikawa S., Yamasaki M., Morohoshi N., Haraguchi T. Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett. 1989 Jun 5;249(2):348–352. doi: 10.1016/0014-5793(89)80656-8. [DOI] [PubMed] [Google Scholar]
- Mueller G. C., Kim U. H. Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology. 1978 May;102(5):1429–1435. doi: 10.1210/endo-102-5-1429. [DOI] [PubMed] [Google Scholar]
- Obradors N., Aguilar J. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol. 1991 Aug;57(8):2383–2388. doi: 10.1128/aem.57.8.2383-2388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohe T., Mashino T., Hirobe M. Novel metabolic pathway of arylethers by cytochrome P450: cleavage of the oxygen-aromatic ring bond accompanying ipso-substitution by the oxygen atom of the active species in cytochrome P450 models and cytochrome P450. Arch Biochem Biophys. 1994 May 1;310(2):402–409. doi: 10.1006/abbi.1994.1185. [DOI] [PubMed] [Google Scholar]
- Paltauf F. Ether lipids in biomembranes. Chem Phys Lipids. 1994 Dec;74(2):101–139. doi: 10.1016/0009-3084(94)90054-x. [DOI] [PubMed] [Google Scholar]
- Payne W. J., Todd R. L. Flavin-linked dehydrogenation of ether glycols by cell-free extracts of a soil bacterium. J Bacteriol. 1966 Apr;91(4):1533–1536. doi: 10.1128/jb.91.4.1533-1536.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson D., Llaneza J. Identification of a carbon-oxygen lyase activity cleaving the ether linkage in carboxymethyloxysuccinic acid. Arch Biochem Biophys. 1974 May;162(1):135–146. doi: 10.1016/0003-9861(74)90112-x. [DOI] [PubMed] [Google Scholar]
- Ribbons D. W. Requirement of two protein fractions for O-demethylase activity in Pseudomonas testosteroni. FEBS Lett. 1971 Jan 12;12(3):161–165. doi: 10.1016/0014-5793(71)80058-3. [DOI] [PubMed] [Google Scholar]
- Ribbons D. W. Stoicheiometry of O-demethylase activity in Pseudomonas aeruginosa. FEBS Lett. 1970 May 25;8(2):101–104. doi: 10.1016/0014-5793(70)80235-6. [DOI] [PubMed] [Google Scholar]
- Salanitro J. P., Diaz L. A., Williams M. P., Wisniewski H. L. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Appl Environ Microbiol. 1994 Jul;60(7):2593–2596. doi: 10.1128/aem.60.7.2593-2596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariaslani F. S., Kunz D. A. Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem Biophys Res Commun. 1986 Dec 15;141(2):405–410. doi: 10.1016/s0006-291x(86)80187-5. [DOI] [PubMed] [Google Scholar]
- Sariaslani F. S. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178. doi: 10.1016/s0065-2164(08)70453-2. [DOI] [PubMed] [Google Scholar]
- Schink B., Janssen P. H., Frings J. Microbial degradation of natural and of new synthetic polymers. FEMS Microbiol Rev. 1992 Dec;9(2-4):311–316. doi: 10.1111/j.1574-6968.1992.tb05852.x. [DOI] [PubMed] [Google Scholar]
- Schink B., Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol. 1983 Jun;45(6):1905–1913. doi: 10.1128/aem.45.6.1905-1913.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid A., Benz R., Schink B. Identification of two porins in Pelobacter venetianus fermenting high-molecular-mass polyethylene glycols. J Bacteriol. 1991 Aug;173(16):4909–4913. doi: 10.1128/jb.173.16.4909-4913.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt S., Wittich R. M., Fortnagel P., Erdmann D., Francke W. Metabolism of 3-methyldiphenyl ether by Sphingomonas sp. SS31. FEMS Microbiol Lett. 1992 Sep 15;75(2-3):253–258. doi: 10.1016/0378-1097(92)90413-i. [DOI] [PubMed] [Google Scholar]
- Schramm E., Schink B. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation. 1991;2(2):71–79. doi: 10.1007/BF00114597. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stupperich E., Konle R. Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata. Appl Environ Microbiol. 1993 Sep;59(9):3110–3116. doi: 10.1128/aem.59.9.3110-3116.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stupperich E. Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev. 1993 Nov;12(4):349–365. doi: 10.1111/j.1574-6976.1993.tb00027.x. [DOI] [PubMed] [Google Scholar]
- Sutherland J. B. Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii. Appl Environ Microbiol. 1986 Jul;52(1):98–100. doi: 10.1128/aem.52.1.98-100.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trower M. K., Sariaslani F. S., O'Keefe D. P. Purification and characterization of a soybean flour-induced cytochrome P-450 from Streptomyces griseus. J Bacteriol. 1989 Apr;171(4):1781–1787. doi: 10.1128/jb.171.4.1781-1787.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagener S., Schink B. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl Environ Microbiol. 1988 Feb;54(2):561–565. doi: 10.1128/aem.54.2.561-565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994 Jul;135(1):175–182. doi: 10.1210/endo.135.1.8013351. [DOI] [PubMed] [Google Scholar]
- Young I. G., Cox G. B., Gibson F. 2,3-Dihydroxybenzoate as a bacterial growth factor and its route of biosynthesis. Biochim Biophys Acta. 1967 Jul 25;141(2):319–331. doi: 10.1016/0304-4165(67)90106-7. [DOI] [PubMed] [Google Scholar]
- Young I. G., Gibson F. Regulation of the enzymes involved in the biosynthesis of 2,3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochim Biophys Acta. 1969 May 6;177(3):401–411. doi: 10.1016/0304-4165(69)90302-x. [DOI] [PubMed] [Google Scholar]
- el Kasmi A., Rajasekharan S., Ragsdale S. W. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum. Biochemistry. 1994 Sep 20;33(37):11217–11224. doi: 10.1021/bi00203a018. [DOI] [PubMed] [Google Scholar]