Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1996 Jun;60(2):280–300. doi: 10.1128/mr.60.2.280-300.1996

Molecular and industrial aspects of glucose isomerase.

S H Bhosale 1, M B Rao 1, V V Deshpande 1
PMCID: PMC239444  PMID: 8801434

Abstract

Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.

Full Text

The Full Text of this article is available as a PDF (655.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albery W. J., Knowles J. R. Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry. 1976 Dec 14;15(25):5627–5631. doi: 10.1021/bi00670a031. [DOI] [PubMed] [Google Scholar]
  2. Allen K. N., Lavie A., Farber G. K., Glasfeld A., Petsko G. A., Ringe D. Isotopic exchange plus substrate and inhibition kinetics of D-xylose isomerase do not support a proton-transfer mechanism. Biochemistry. 1994 Feb 15;33(6):1481–1487. doi: 10.1021/bi00172a026. [DOI] [PubMed] [Google Scholar]
  3. Allen K. N., Lavie A., Glasfeld A., Tanada T. N., Gerrity D. P., Carlson S. C., Farber G. K., Petsko G. A., Ringe D. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid. Biochemistry. 1994 Feb 15;33(6):1488–1494. doi: 10.1021/bi00172a027. [DOI] [PubMed] [Google Scholar]
  4. Allen K. N., Lavie A., Petsko G. A., Ringe D. Design, synthesis, and characterization of a potent xylose isomerase inhibitor, D-threonohydroxamic acid, and high-resolution X-ray crystallographic structure of the enzyme-inhibitor complex. Biochemistry. 1995 Mar 21;34(11):3742–3749. doi: 10.1021/bi00011a032. [DOI] [PubMed] [Google Scholar]
  5. Amore R., Hollenberg C. P. Xylose isomerase from Actinoplanes missouriensis: primary structure of the gene and the protein. Nucleic Acids Res. 1989 Sep 25;17(18):7515–7515. doi: 10.1093/nar/17.18.7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BARTFAY J. Glucose-isomerase in barley malt. Nature. 1960 Mar 26;185:924–925. doi: 10.1038/185924a0. [DOI] [PubMed] [Google Scholar]
  7. Basuki W., Iizuka M., Ito K., Furuichi K., Minamiura N. Evidence for the existence of isozymes of glucose isomerase from Streptomyces phaeochromogenes. Biosci Biotechnol Biochem. 1992 Feb;56(2):180–185. doi: 10.1271/bbb.56.180. [DOI] [PubMed] [Google Scholar]
  8. Batt C. A., Jamieson A. C., Vandeyar M. A. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Proc Natl Acad Sci U S A. 1990 Jan;87(2):618–622. doi: 10.1073/pnas.87.2.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beck C. F., Warren R. A. Divergent promoters, a common form of gene organization. Microbiol Rev. 1988 Sep;52(3):318–326. doi: 10.1128/mr.52.3.318-326.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blacklow S. C., Raines R. T., Lim W. A., Zamore P. D., Knowles J. R. Triosephosphate isomerase catalysis is diffusion controlled. Appendix: Analysis of triose phosphate equilibria in aqueous solution by 31P NMR. Biochemistry. 1988 Feb 23;27(4):1158–1167. doi: 10.1021/bi00404a013. [DOI] [PubMed] [Google Scholar]
  11. Blow D. M., Collyer C. A., Goldberg J. D., Smart O. S. Structure and mechanism of D-xylose isomerase. Faraday Discuss. 1992;(93):67–73. doi: 10.1039/fd9929300067. [DOI] [PubMed] [Google Scholar]
  12. Bogumil R., Kappl R., Hüttermann J., Sudfeldt C., Witzel H. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. Eur J Biochem. 1993 May 1;213(3):1185–1192. doi: 10.1111/j.1432-1033.1993.tb17869.x. [DOI] [PubMed] [Google Scholar]
  13. Bok S. H., Seidman M., Wopat P. W. Selective isolation of acidophilic streptomyces strains for glucose isomerase production. Appl Environ Microbiol. 1984 Jun;47(6):1213–1215. doi: 10.1128/aem.47.6.1213-1215.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bor Y. C., Moraes C., Lee S. P., Crosby W. L., Sinskey A. J., Batt C. A. Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene. 1992 May 1;114(1):127–132. doi: 10.1016/0378-1119(92)90718-5. [DOI] [PubMed] [Google Scholar]
  15. Briggs K. A., Lancashire W. E., Hartley B. S. Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase. EMBO J. 1984 Mar;3(3):611–616. doi: 10.1002/j.1460-2075.1984.tb01856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Callens M., Tomme P., Kersters-Hilderson H., Cornelis R., Vangrysperre W., De Bruyne C. K. Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber. Biochem J. 1988 Feb 15;250(1):285–290. doi: 10.1042/bj2500285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Carrell H. L., Glusker J. P., Burger V., Manfre F., Tritsch D., Biellmann J. F. X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4440–4444. doi: 10.1073/pnas.86.12.4440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Carrell H. L., Hoier H., Glusker J. P. Modes of binding substrates and their analogues to the enzyme D-xylose isomerase. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):113–123. doi: 10.1107/S0907444993009345. [DOI] [PubMed] [Google Scholar]
  19. Carrell H. L., Rubin B. H., Hurley T. J., Glusker J. P. X-ray crystal structure of D-xylose isomerase at 4-A resolution. J Biol Chem. 1984 Mar 10;259(5):3230–3236. [PubMed] [Google Scholar]
  20. Cha J., Cho Y., Whitaker R. D., Carrell H. L., Glusker J. P., Karplus P. A., Batt C. A. Perturbing the metal site in D-xylose isomerase. Effect of mutations of His-220 on enzyme stability. J Biol Chem. 1994 Jan 28;269(4):2687–2694. [PubMed] [Google Scholar]
  21. Chauthaiwale J., Rao M. Production and Purification of Extracellular D-Xylose Isomerase from an Alkaliphilic, Thermophilic Bacillus sp. Appl Environ Microbiol. 1994 Dec;60(12):4495–4499. doi: 10.1128/aem.60.12.4495-4499.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chen W. P., Anderson A. W., Han Y. W. Production of Glucose Isomerase by Streptomyces flavogriseus. Appl Environ Microbiol. 1979 Feb;37(2):324–331. doi: 10.1128/aem.37.2.324-331.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chiang L. C., Gong C. S., Chen L. F., Tsao G. T. d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol. 1981 Aug;42(2):284–289. doi: 10.1128/aem.42.2.284-289.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Collyer C. A., Blow D. M. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1362–1366. doi: 10.1073/pnas.87.4.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Collyer C. A., Henrick K., Blow D. M. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol. 1990 Mar 5;212(1):211–235. doi: 10.1016/0022-2836(90)90316-E. [DOI] [PubMed] [Google Scholar]
  26. Dahl M. K., Degenkolb J., Hillen W. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. J Mol Biol. 1994 Oct 28;243(3):413–424. doi: 10.1006/jmbi.1994.1669. [DOI] [PubMed] [Google Scholar]
  27. David J. D., Wiesmeyer H. Control of xylose metabolism in Escherichia coli. Biochim Biophys Acta. 1970 Mar 24;201(3):497–499. doi: 10.1016/0304-4165(70)90171-6. [DOI] [PubMed] [Google Scholar]
  28. Dekker K., Yamagata H., Sakaguchi K., Udaka S. Xylose (glucose) isomerase gene from the thermophile Clostridium thermohydrosulfuricum; cloning, sequencing, and expression in Escherichia coli. Agric Biol Chem. 1991 Jan;55(1):221–227. [PubMed] [Google Scholar]
  29. Dekker K., Yamagata H., Sakaguchi K., Udaka S. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J Bacteriol. 1991 May;173(10):3078–3083. doi: 10.1128/jb.173.10.3078-3083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Farber G. K., Glasfeld A., Tiraby G., Ringe D., Petsko G. A. Crystallographic studies of the mechanism of xylose isomerase. Biochemistry. 1989 Sep 5;28(18):7289–7297. doi: 10.1021/bi00444a022. [DOI] [PubMed] [Google Scholar]
  31. Farber G. K., Petsko G. A., Ringe D. The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes. Protein Eng. 1987 Dec;1(6):459–466. doi: 10.1093/protein/1.6.459. [DOI] [PubMed] [Google Scholar]
  32. Feldmann S. D., Sahm H., Sprenger G. A. Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K12. Mol Gen Genet. 1992 Aug;234(2):201–210. doi: 10.1007/BF00283840. [DOI] [PubMed] [Google Scholar]
  33. Gaikwad S. M., More M. W., Vartak H. G., Deshpande V. V. Evidence for the essential histidine residue at the active site of glucose/xylose isomerase from Streptomyces. Biochem Biophys Res Commun. 1988 Aug 30;155(1):270–277. doi: 10.1016/s0006-291x(88)81079-9. [DOI] [PubMed] [Google Scholar]
  34. Gaikwad S. M., Pawar H. S., Vartak H. G., Deshpande V. V. Streptomyces glucose/xylose isomerase has a single active site for glucose and xylose. Biochem Biophys Res Commun. 1989 Mar 15;159(2):457–463. doi: 10.1016/0006-291x(89)90014-4. [DOI] [PubMed] [Google Scholar]
  35. Ghangas G. S., Wilson D. B. Isolation and characterization of the Salmonella typhimurium LT2 xylose regulon. J Bacteriol. 1984 Jan;157(1):158–164. doi: 10.1128/jb.157.1.158-164.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ghatge M. S., Deshpande V. V. Evidence for specific interaction of guanidine hydrochloride with carboxy groups of enzymes/proteins. Biochem Biophys Res Commun. 1993 Jun 30;193(3):979–984. doi: 10.1006/bbrc.1993.1721. [DOI] [PubMed] [Google Scholar]
  37. Ghatge M., Mawal Y., Gaikwad S., Deshpande V. Immunoaffinity purification of glucose/xylose isomerase from Streptomyces. Appl Biochem Biotechnol. 1991 Oct;31(1):11–20. doi: 10.1007/BF02922121. [DOI] [PubMed] [Google Scholar]
  38. Glasfeld A., Farber G. K., Ringe D., Marcel T., Drocourt D., Tiraby G., Petsko G. A. Characterization of crystals of xylose isomerase from Streptomyces violaceoniger. J Biol Chem. 1988 Oct 15;263(29):14612–14613. [PubMed] [Google Scholar]
  39. Gong C. S., Chen L. F., Flickinger M. C., Chiang L. C., Tsao G. T. Production of Ethanol from d-Xylose by Using d-Xylose Isomerase and Yeasts. Appl Environ Microbiol. 1981 Feb;41(2):430–436. doi: 10.1128/aem.41.2.430-436.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gärtner D., Degenkolb J., Ripperger J. A., Allmansberger R., Hillen W. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Mol Gen Genet. 1992 Apr;232(3):415–422. doi: 10.1007/BF00266245. [DOI] [PubMed] [Google Scholar]
  41. Gärtner D., Geissendörfer M., Hillen W. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol. 1988 Jul;170(7):3102–3109. doi: 10.1128/jb.170.7.3102-3109.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Henrick K., Collyer C. A., Blow D. M. Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. J Mol Biol. 1989 Jul 5;208(1):129–157. doi: 10.1016/0022-2836(89)90092-2. [DOI] [PubMed] [Google Scholar]
  43. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  44. Hodgson J. The changing bulk biocatalyst market. Biotechnology (N Y) 1994 Aug;12(8):789–790. doi: 10.1038/nbt0894-789. [DOI] [PubMed] [Google Scholar]
  45. Huang J. J., Ho N. W. Cloning and expression of the Escherichia coli D-xylose isomerase gene in Bacillus subtilis. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1154–1160. doi: 10.1016/0006-291x(85)90306-7. [DOI] [PubMed] [Google Scholar]
  46. Jacob S., Allmansberger R., Gärtner D., Hillen W. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Mol Gen Genet. 1991 Oct;229(2):189–196. doi: 10.1007/BF00272155. [DOI] [PubMed] [Google Scholar]
  47. Jamieson A. C., Batt C. A. Fluorescent properties of the Escherichia coli D-xylose isomerase active site. Protein Eng. 1992 Apr;5(3):235–240. doi: 10.1093/protein/5.3.235. [DOI] [PubMed] [Google Scholar]
  48. Jenkins J., Janin J., Rey F., Chiadmi M., van Tilbeurgh H., Lasters I., De Maeyer M., Van Belle D., Wodak S. J., Lauwereys M. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry. 1992 Jun 23;31(24):5449–5458. doi: 10.1021/bi00139a005. [DOI] [PubMed] [Google Scholar]
  49. Kauder C., Allmansberger R., Gärtner D., Schmiedel D., Hillen W. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. FEMS Microbiol Lett. 1993 May 1;109(1):81–84. doi: 10.1111/j.1574-6968.1993.tb06147.x. [DOI] [PubMed] [Google Scholar]
  50. Keleti T., Leoncini R., Pagani R., Marinello E. A kinetic method for distinguishing whether an enzyme has one or two active sites for two different substrates. Rat liver L-threonine dehydratase has a single active site for threonine and serine. Eur J Biochem. 1987 Dec 30;170(1-2):179–183. doi: 10.1111/j.1432-1033.1987.tb13684.x. [DOI] [PubMed] [Google Scholar]
  51. Kikuchi T., Itoh Y., Kasumi T., Fukazawa C. Molecular cloning of the xylA gene encoding xylose isomerase from Streptomyces griseofuscus S-41: primary structure of the gene and its product. Agric Biol Chem. 1990 Sep;54(9):2469–2472. [PubMed] [Google Scholar]
  52. Klibanov A. M. Immobilized enzymes and cells as practical catalysts. Science. 1983 Feb 11;219(4585):722–727. doi: 10.1126/science.219.4585.722. [DOI] [PubMed] [Google Scholar]
  53. Krasheninnikova L. V., Rassadina G. V., Kirsanova S. N., Khromova L. M., Iusibov V. M., Pak Chun I. r., Andrianov V. M., Piruzian E. S. Poluchenie transgennykh rastenii kartofelia Solanum tuberosum, nesushchikh aktivnye bakterial'nye geny xyl i T-cyt, vliiaiushchie na balans fitogormonov. Mol Gen Mikrobiol Virusol. 1991 Nov;(11):17–20. [PubMed] [Google Scholar]
  54. Kraus A., Hueck C., Gärtner D., Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol. 1994 Mar;176(6):1738–1745. doi: 10.1128/jb.176.6.1738-1745.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kreuzer P., Gärtner D., Allmansberger R., Hillen W. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol. 1989 Jul;171(7):3840–3845. doi: 10.1128/jb.171.7.3840-3845.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lambeir A. M., Lauwereys M., Stanssens P., Mrabet N. T., Snauwaert J., van Tilbeurgh H., Matthyssens G., Lasters I., De Maeyer M., Wodak S. J. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Biochemistry. 1992 Jun 23;31(24):5459–5466. doi: 10.1021/bi00139a006. [DOI] [PubMed] [Google Scholar]
  57. Lavie A., Allen K. N., Petsko G. A., Ringe D. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry. 1994 May 10;33(18):5469–5480. doi: 10.1021/bi00184a016. [DOI] [PubMed] [Google Scholar]
  58. Lawlis V. B., Dennis M. S., Chen E. Y., Smith D. H., Henner D. J. Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Appl Environ Microbiol. 1984 Jan;47(1):15–21. doi: 10.1128/aem.47.1.15-21.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lee C. Y., Bagdasarian M., Meng M. H., Zeikus J. G. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. J Biol Chem. 1990 Nov 5;265(31):19082–19090. [PubMed] [Google Scholar]
  60. Lee C. Y., Bhatnagar L., Saha B. C., Lee Y. E., Takagi M., Imanaka T., Bagdasarian M., Zeikus J. G. Cloning and expression of the Clostridium thermosulfurogenes glucose isomerase gene in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol. 1990 Sep;56(9):2638–2643. doi: 10.1128/aem.56.9.2638-2643.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lee C., Saha B. C., Zeikus J. G. Characterization of thermoanaerobacter glucose isomerase in relation to saccharidase synthesis and development of single-step processes for sweetener production. Appl Environ Microbiol. 1990 Sep;56(9):2895–2901. doi: 10.1128/aem.56.9.2895-2901.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Lokman B. C., van Santen P., Verdoes J. C., Krüse J., Leer R. J., Posno M., Pouwels P. H. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet. 1991 Nov;230(1-2):161–169. doi: 10.1007/BF00290664. [DOI] [PubMed] [Google Scholar]
  63. Loviny-Anderton T., Shaw P. C., Shin M. K., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Gene cloning, sequence and expression. Biochem J. 1991 Jul 1;277(Pt 1):263–271. doi: 10.1042/bj2770263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. MARSHALL R. O., KOOI E. R. Enzymatic conversion of D-glucose to D-fructose. Science. 1957 Apr 5;125(3249):648–649. doi: 10.1126/science.125.3249.648. [DOI] [PubMed] [Google Scholar]
  65. Maleszka R., Wang P. Y., Schneider H. A Col E1 hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium. Can J Biochem. 1982 Feb;60(2):144–151. doi: 10.1139/o82-020. [DOI] [PubMed] [Google Scholar]
  66. Meaden P. G., Aduse-Opoku J., Reizer J., Reizer A., Lanceman Y. A., Martin M. F., Mitchell W. J. The xylose isomerase-encoding gene (xylA) of Clostridium thermosaccharolyticum: cloning, sequencing and phylogeny of XylA enzymes. Gene. 1994 Apr 8;141(1):97–101. doi: 10.1016/0378-1119(94)90134-1. [DOI] [PubMed] [Google Scholar]
  67. Meng M., Lee C., Bagdasarian M., Zeikus J. G. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4015–4019. doi: 10.1073/pnas.88.9.4015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ogden S., Haggerty D., Stoner C. M., Kolodrubetz D., Schleif R. The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3346–3350. doi: 10.1073/pnas.77.6.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Piruzian E. S., Andrianov V. M., Iusibov V. M., Mett V. L. Ekspressiia gena gliukozoizomerazy Escherichia coli v transgennykh rasteniiakh. Dokl Akad Nauk SSSR. 1989;305(3):729–731. [PubMed] [Google Scholar]
  70. Pubols M. H., Zahnley J. C., Axelrod B. Partial Purification & Properties of Xylose & Ribose Isomerase in Higher Plants. Plant Physiol. 1963 Jul;38(4):457–461. doi: 10.1104/pp.38.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Quax W. J., Mrabet N. T., Luiten R. G., Schuurhuizen P. W., Stanssens P., Lasters I. Enhancing the thermostability of glucose isomerase by protein engineering. Biotechnology (N Y) 1991 Aug;9(8):738–742. doi: 10.1038/nbt0891-738. [DOI] [PubMed] [Google Scholar]
  72. RIEDER S. V., ROSE I. A. The mechanism of the triosephosphate isomerase reaction. J Biol Chem. 1959 May;234(5):1007–1010. [PubMed] [Google Scholar]
  73. Rangarajan M., Asboth B., Hartley B. S. Stability of Arthrobacter D-xylose isomerase to denaturants and heat. Biochem J. 1992 Aug 1;285(Pt 3):889–898. doi: 10.1042/bj2850889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Rasmussen H., la Cour T., Nyborg J., Schülein M. Crystallization and preliminary investigation of xylose isomerase from Bacillus coagulans. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):231–233. doi: 10.1107/S0907444993009552. [DOI] [PubMed] [Google Scholar]
  75. Rose I. A., O'Connell E. L., Mortlock R. P. Stereochemical evidence for a cis-enediol intermediate in Mn-dependent aldose isomerases. Biochim Biophys Acta. 1969 Apr 22;178(2):376–379. doi: 10.1016/0005-2744(69)90405-7. [DOI] [PubMed] [Google Scholar]
  76. Rosenfeld S. A., Stevis P. E., Ho N. W. Cloning and characterization of the xyl genes from Escherichia coli. Mol Gen Genet. 1984;194(3):410–415. doi: 10.1007/BF00425552. [DOI] [PubMed] [Google Scholar]
  77. Rygus T., Scheler A., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol. 1991;155(6):535–542. doi: 10.1007/BF00245346. [DOI] [PubMed] [Google Scholar]
  78. Saari G. C., Kumar A. A., Kawasaki G. H., Insley M. Y., O'Hara P. J. Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J Bacteriol. 1987 Feb;169(2):612–618. doi: 10.1128/jb.169.2.612-618.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Scheler A., Rygus T., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch Microbiol. 1991;155(6):526–534. doi: 10.1007/BF00245345. [DOI] [PubMed] [Google Scholar]
  80. Schellenberg G. D., Sarthy A., Larson A. E., Backer M. P., Crabb J. W., Lidstrom M., Hall B. D., Furlong C. E. Xylose isomerase from Escherichia coli. Characterization of the protein and the structural gene. J Biol Chem. 1984 Jun 10;259(11):6826–6832. [PubMed] [Google Scholar]
  81. Schray K. J., Rose I. A. Anomeric specificity and mechanism of two pentose isomerases. Biochemistry. 1971 Mar 16;10(6):1058–1062. doi: 10.1021/bi00782a019. [DOI] [PubMed] [Google Scholar]
  82. Shamanna D. K., Sanderson K. E. Genetics and regulation of D-xylose utilization in Salmonella typhimurium LT2. J Bacteriol. 1979 Jul;139(1):71–79. doi: 10.1128/jb.139.1.71-79.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Shamanna D. K., Sanderson K. E. Uptake and catabolism of D-xylose in Salmonella typhimurium LT2. J Bacteriol. 1979 Jul;139(1):64–70. doi: 10.1128/jb.139.1.64-70.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sizemore C., Buchner E., Rygus T., Witke C., Götz F., Hillen W. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol Gen Genet. 1991 Jul;227(3):377–384. doi: 10.1007/BF00273926. [DOI] [PubMed] [Google Scholar]
  85. Sizemore C., Geissdörfer W., Hillen W. Using fusions with luxAB from Vibrio harveyi MAV to quantify induction and catabolite repression of the xyl operon in Staphylococcus carnosus TM300. FEMS Microbiol Lett. 1993 Mar 1;107(2-3):303–306. doi: 10.1111/j.1574-6968.1993.tb06047.x. [DOI] [PubMed] [Google Scholar]
  86. Sizemore C., Wieland B., Götz F., Hillen W. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol. 1992 May;174(9):3042–3048. doi: 10.1128/jb.174.9.3042-3048.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Smith C. A., Rangarajan M., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Purification and properties. Biochem J. 1991 Jul 1;277(Pt 1):255–261. doi: 10.1042/bj2770255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Sudfeldt C., Schäffer A., Kägi J. H., Bogumil R., Schulz H. P., Wulff S., Witzel H. Spectroscopic studies on the metal-ion-binding sites of Co2(+)-substituted D-xylose isomerase from Streptomyces rubiginosus. Eur J Biochem. 1990 Nov 13;193(3):863–871. doi: 10.1111/j.1432-1033.1990.tb19410.x. [DOI] [PubMed] [Google Scholar]
  89. Suekane M., Iizuka H. Production of glucose isomerase by genus Streptomyces. Z Allg Mikrobiol. 1982;22(8):577–589. doi: 10.1002/jobm.3630220809. [DOI] [PubMed] [Google Scholar]
  90. Vangrysperre W., Callens M., Kersters-Hilderson H., De Bruyne C. K. Evidence for an essential histidine residue in D-xylose isomerases. Biochem J. 1988 Feb 15;250(1):153–160. doi: 10.1042/bj2500153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Vangrysperre W., Kersters-Hilderson H., Callens M., De Bruyne C. K. Reaction of Woodward's reagent K with D-xylose isomerases. Modification of an active site carboxylate residue. Biochem J. 1989 May 15;260(1):163–169. doi: 10.1042/bj2600163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Vangrysperre W., Van Damme J., Vandekerckhove J., De Bruyne C. K., Cornelis R., Kersters-Hilderson H. Localization of the essential histidine and carboxylate group in D-xylose isomerases. Biochem J. 1990 Feb 1;265(3):699–705. doi: 10.1042/bj2650699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Varsani L., Cui T., Rangarajan M., Hartley B. S., Goldberg J., Collyer C., Blow D. M. Arthrobacter D-xylose isomerase: protein-engineered subunit interfaces. Biochem J. 1993 Apr 15;291(Pt 2):575–583. doi: 10.1042/bj2910575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]
  95. Wilhelm M., Hollenberg C. P. Selective cloning of Bacillus subtilis xylose isomerase and xylulokinase in Escherichia coli genes by IS5-mediated expression. EMBO J. 1984 Nov;3(11):2555–2560. doi: 10.1002/j.1460-2075.1984.tb02173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Wong H. C., Ting Y., Lin H. C., Reichert F., Myambo K., Watt K. W., Toy P. L., Drummond R. J. Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J Bacteriol. 1991 Nov;173(21):6849–6858. doi: 10.1128/jb.173.21.6849-6858.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Wovcha M. G., Steuerwald D. L., Brooks K. E. Amplification of D-xylose and D-glucose isomerase activities in Escherichia coli by gene cloning. Appl Environ Microbiol. 1983 Apr;45(4):1402–1404. doi: 10.1128/aem.45.4.1402-1404.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. van Bastelaere P. B., Kersters-Hilderson H. L., Lambeir A. M. Wild-type and mutant D-xylose isomerase from Actinoplanes missouriensis: metal-ion dissociation constants, kinetic parameters of deuterated and non-deuterated substrates and solvent-isotope effects. Biochem J. 1995 Apr 1;307(Pt 1):135–142. doi: 10.1042/bj3070135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. van Tilbeurgh H., Jenkins J., Chiadmi M., Janin J., Wodak S. J., Mrabet N. T., Lambeir A. M. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. Biochemistry. 1992 Jun 23;31(24):5467–5471. doi: 10.1021/bi00139a007. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES