Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1996 Jun;60(2):439–471. doi: 10.1128/mr.60.2.439-471.1996

Methanotrophic bacteria.

R S Hanson 1, T E Hanson 1
PMCID: PMC239451  PMID: 8801441

Abstract

Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.

Full Text

The Full Text of this article is available as a PDF (634.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsen A. P., King G. M. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol. 1993 Feb;59(2):485–490. doi: 10.1128/aem.59.2.485-490.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. N., Hanson R. S. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol. 1985 Mar;161(3):955–962. doi: 10.1128/jb.161.3.955-962.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alperin M. J., Reeburgh W. S. Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol. 1985 Oct;50(4):940–945. doi: 10.1128/aem.50.4.940-945.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alvarez-Cohen L., McCarty P. L., Boulygina E., Hanson R. S., Brusseau G. A., Tsien H. C. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl Environ Microbiol. 1992 Jun;58(6):1886–1893. doi: 10.1128/aem.58.6.1886-1893.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alvarez-Cohen L., McCarty P. L. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol. 1991 Jan;57(1):228–235. doi: 10.1128/aem.57.1.228-235.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Anderson D. J., Lidstrom M. E. The moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1. J Bacteriol. 1988 May;170(5):2254–2262. doi: 10.1128/jb.170.5.2254-2262.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Anderson D. J., Morris C. J., Nunn D. N., Anthony C., Lidstrom M. E. Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation. Gene. 1990 May 31;90(1):173–176. doi: 10.1016/0378-1119(90)90457-3. [DOI] [PubMed] [Google Scholar]
  9. Anthony C. Assimilation of carbon by methylotrophs. Biotechnology. 1991;18:79–109. doi: 10.1016/b978-0-7506-9188-8.50011-5. [DOI] [PubMed] [Google Scholar]
  10. Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol. 1986;27:113–210. doi: 10.1016/s0065-2911(08)60305-7. [DOI] [PubMed] [Google Scholar]
  11. Anthony C. The c-type cytochromes of methylotrophic bacteria. Biochim Biophys Acta. 1992 Jan 30;1099(1):1–15. [PubMed] [Google Scholar]
  12. Anthony C. The structure of bacterial quinoprotein dehydrogenases. Int J Biochem. 1992;24(1):29–39. doi: 10.1016/0020-711x(92)90226-q. [DOI] [PubMed] [Google Scholar]
  13. Arciero D., Vannelli T., Logan M., Hooper A. B. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun. 1989 Mar 15;159(2):640–643. doi: 10.1016/0006-291x(89)90042-9. [DOI] [PubMed] [Google Scholar]
  14. Arfman N., Bystrykh L., Govorukhina N. I., Dijkhuizen L. 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. Methods Enzymol. 1990;188:391–397. doi: 10.1016/0076-6879(90)88062-f. [DOI] [PubMed] [Google Scholar]
  15. Arps P. J., Fulton G. F., Minnich E. C., Lidstrom M. E. Genetics of serine pathway enzymes in Methylobacterium extorquens AM1: phosphoenolpyruvate carboxylase and malyl coenzyme A lyase. J Bacteriol. 1993 Jun;175(12):3776–3783. doi: 10.1128/jb.175.12.3776-3783.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Banerjee S., Van Duuren B. L. Covalent binding of the carcinogen trichloroethylene to hepatic microsomal proteins and to exogenous DNA in vitro. Cancer Res. 1978 Mar;38(3):776–780. [PubMed] [Google Scholar]
  17. Barta T. M., Hanson R. S. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria. Antonie Van Leeuwenhoek. 1993;64(2):109–120. doi: 10.1007/BF00873021. [DOI] [PubMed] [Google Scholar]
  18. Bastien C., Machlin S., Zhang Y., Donaldson K., Hanson R. S. Organization of Genes Required for the Oxidation of Methanol to Formaldehyde in Three Type II Methylotrophs. Appl Environ Microbiol. 1989 Dec;55(12):3124–3130. doi: 10.1128/aem.55.12.3124-3130.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bergmann D. J., Hooper A. B. Sequence of the gene, amoB, for the 43-kDa polypeptide of ammonia monoxygenase of Nitrosomonas europaea. Biochem Biophys Res Commun. 1994 Oct 28;204(2):759–762. doi: 10.1006/bbrc.1994.2524. [DOI] [PubMed] [Google Scholar]
  20. Blake D. R., Rowland F. S. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science. 1988 Mar 4;239(4844):1129–1131. doi: 10.1126/science.239.4844.1129. [DOI] [PubMed] [Google Scholar]
  21. Bone T. L., Balkwill D. L. Improved flotation technique for microscopy of in situ soil and sediment microorganisms. Appl Environ Microbiol. 1986 Mar;51(3):462–468. doi: 10.1128/aem.51.3.462-468.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. doi: 10.1128/aem.45.4.1286-1294.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bowman J. P., Jiménez L., Rosario I., Hazen T. C., Sayler G. S. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Appl Environ Microbiol. 1993 Aug;59(8):2380–2387. doi: 10.1128/aem.59.8.2380-2387.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bowman J. P., Sly L. I., Stackebrandt E. The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol. 1995 Jan;45(1):182–185. doi: 10.1099/00207713-45-1-182. [DOI] [PubMed] [Google Scholar]
  25. Bratina B. J., Brusseau G. A., Hanson R. S. Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol. 1992 Oct;42(4):645–648. doi: 10.1099/00207713-42-4-645. [DOI] [PubMed] [Google Scholar]
  26. Brusseau G. A., Bulygina E. S., Hanson R. S. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol. 1994 Feb;60(2):626–636. doi: 10.1128/aem.60.2.626-636.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Brusseau G. A., Tsien H. C., Hanson R. S., Wackett L. P. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation. 1990;1(1):19–29. doi: 10.1007/BF00117048. [DOI] [PubMed] [Google Scholar]
  28. Bulygina E. S., Galchenko V. F., Govorukhina N. I., Netrusov A. I., Nikitin D. I., Trotsenko Y. A., Chumakov K. M. Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. J Gen Microbiol. 1990 Mar;136(3):441–446. doi: 10.1099/00221287-136-3-441. [DOI] [PubMed] [Google Scholar]
  29. Bédard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989 Mar;53(1):68–84. doi: 10.1128/mr.53.1.68-84.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cardy D. L., Laidler V., Salmond G. P., Murrell J. C. Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol. 1991 Feb;5(2):335–342. doi: 10.1111/j.1365-2958.1991.tb02114.x. [DOI] [PubMed] [Google Scholar]
  31. Cardy D. L., Laidler V., Salmond G. P., Murrell J. C. The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Arch Microbiol. 1991;156(6):477–483. doi: 10.1007/BF00245395. [DOI] [PubMed] [Google Scholar]
  32. Childress J. J., Fisher C. R., Brooks J. M., Kennicutt M. C., 2nd, Bidigare R., Anderson A. E. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: mussels fueled by gas. Science. 1986 Sep 19;233(4770):1306–1308. doi: 10.1126/science.233.4770.1306. [DOI] [PubMed] [Google Scholar]
  33. Chistoserdova L. V., Lidstrom M. E. Cloning, mutagenesis, and physiological effect of a hydroxypyruvate reductase gene from Methylobacterium extorquens AM1. J Bacteriol. 1992 Jan;174(1):71–77. doi: 10.1128/jb.174.1.71-77.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chistoserdova L. V., Lidstrom M. E. Genetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase. J Bacteriol. 1994 Nov;176(21):6759–6762. doi: 10.1128/jb.176.21.6759-6762.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chistoserdova L. V., Lidstrom M. E. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol. 1994 Apr;176(7):1957–1968. doi: 10.1128/jb.176.7.1957-1968.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Chistoserdova L. V., Lidstrom M. E. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification, sequence, and mutation of three new genes involved in C1 assimilation, orf4, mtkA, and mtkB. J Bacteriol. 1994 Dec;176(23):7398–7404. doi: 10.1128/jb.176.23.7398-7404.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Colby J., Dalton H. Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem J. 1979 Mar 1;177(3):903–908. doi: 10.1042/bj1770903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Colby J., Dalton H. Resolution of the methane mono-oxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem J. 1978 May 1;171(2):461–468. doi: 10.1042/bj1710461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Collins M. L., Buchholz L. A., Remsen C. C. Effect of Copper on Methylomonas albus BG8. Appl Environ Microbiol. 1991 Apr;57(4):1261–1264. doi: 10.1128/aem.57.4.1261-1264.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Corliss J. B., Dymond J., Gordon L. I., Edmond J. M., von Herzen R. P., Ballard R. D., Green K., Williams D., Bainbridge A., Crane K., van Andel T. H. Submarine thermal sprirngs on the galapagos rift. Science. 1979 Mar 16;203(4385):1073–1083. doi: 10.1126/science.203.4385.1073. [DOI] [PubMed] [Google Scholar]
  42. DAVIS J. B., COTY V. F., STANLEY J. P. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA. J Bacteriol. 1964 Aug;88:468–472. doi: 10.1128/jb.88.2.468-472.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dacey J. W. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science. 1980 Nov 28;210(4473):1017–1019. doi: 10.1126/science.210.4473.1017. [DOI] [PubMed] [Google Scholar]
  44. Dacey J. W., Klug M. J. Methane efflux from lake sediments through water lilies. Science. 1979 Mar 23;203(4386):1253–1255. doi: 10.1126/science.203.4386.1253. [DOI] [PubMed] [Google Scholar]
  45. Dagley S. Determinants of biodegradability. Q Rev Biophys. 1978 Nov;11(4):577–602. doi: 10.1017/s0033583500005679. [DOI] [PubMed] [Google Scholar]
  46. Dalton H., Stirling D. I. Co-metabolism. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):481–496. doi: 10.1098/rstb.1982.0056. [DOI] [PubMed] [Google Scholar]
  47. Davidson V. L., Neher J. W., Cecchini G. The biosynthesis and assembly of methanol dehydrogenase in bacterium W3A1. J Biol Chem. 1985 Aug 15;260(17):9642–9647. [PubMed] [Google Scholar]
  48. Davies S. L., Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):227–232. doi: 10.1099/00221287-61-2-227. [DOI] [PubMed] [Google Scholar]
  49. Distel D. L., Cavanaugh C. M. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol. 1994 Apr;176(7):1932–1938. doi: 10.1128/jb.176.7.1932-1938.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Eikmanns B., Fuchs G., Thauer R. K. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur J Biochem. 1985 Jan 2;146(1):149–154. doi: 10.1111/j.1432-1033.1985.tb08631.x. [DOI] [PubMed] [Google Scholar]
  51. Ensign S. A., Hyman M. R., Arp D. J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol. 1993 Apr;175(7):1971–1980. doi: 10.1128/jb.175.7.1971-1980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ensley B. D. Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol. 1991;45:283–299. doi: 10.1146/annurev.mi.45.100191.001435. [DOI] [PubMed] [Google Scholar]
  53. Fassel T. A., Buchholz L. A., Collins M. L., Remsen C. C. Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labeling. Appl Environ Microbiol. 1992 Jul;58(7):2302–2307. doi: 10.1128/aem.58.7.2302-2307.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ferenci T., Strom T., Quayle J. R. Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem J. 1974 Dec;144(3):477–486. doi: 10.1042/bj1440477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Fogel M. M., Taddeo A. R., Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol. 1986 Apr;51(4):720–724. doi: 10.1128/aem.51.4.720-724.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990 May;56(5):1279–1285. doi: 10.1128/aem.56.5.1279-1285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  58. Fox B. G., Liu Y., Dege J. E., Lipscomb J. D. Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J Biol Chem. 1991 Jan 5;266(1):540–550. [PubMed] [Google Scholar]
  59. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  60. Freedman D. L., Gossett J. M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol. 1989 Sep;55(9):2144–2151. doi: 10.1128/aem.55.9.2144-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Giger W., Molnar-Kubica E. Tetrachloroethylene in contaminated ground and drinking waters. Bull Environ Contam Toxicol. 1978 Apr;19(4):475–480. doi: 10.1007/BF01685829. [DOI] [PubMed] [Google Scholar]
  62. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Green J., Dalton H. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity. J Biol Chem. 1985 Dec 15;260(29):15795–15801. [PubMed] [Google Scholar]
  64. Guckert J. B., Ringelberg D. B., White D. C., Hanson R. S., Bratina B. J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol. 1991 Nov;137(11):2631–2641. doi: 10.1099/00221287-137-11-2631. [DOI] [PubMed] [Google Scholar]
  65. Haber C. L., Allen L. N., Zhao S., Hanson R. S. Methylotrophic bacteria: biochemical diversity and genetics. Science. 1983 Sep 16;221(4616):1147–1153. doi: 10.1126/science.221.4616.1147. [DOI] [PubMed] [Google Scholar]
  66. Hanson R. S., Tsien H. C., Tsuji K., Brusseau G. A., Wackett L. P. Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria. FEMS Microbiol Rev. 1990 Dec;7(3-4):273–278. doi: 10.1111/j.1574-6968.1990.tb04924.x. [DOI] [PubMed] [Google Scholar]
  67. Hanson R. S., Wattenberg E. V. Ecology of methylotrophic bacteria. Biotechnology. 1991;18:325–348. doi: 10.1016/b978-0-7506-9188-8.50021-8. [DOI] [PubMed] [Google Scholar]
  68. Harder W., Attwood M. M. Biology, physiology and biochemistry of hyphomicrobia. Adv Microb Physiol. 1978;17:303–359. doi: 10.1016/s0065-2911(08)60060-0. [DOI] [PubMed] [Google Scholar]
  69. Harms N., de Vries G. E., Maurer K., Hoogendijk J., Stouthamer A. H. Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans. J Bacteriol. 1987 Sep;169(9):3969–3975. doi: 10.1128/jb.169.9.3969-3975.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Harms N., van Spanning R. J. C1 metabolism in Paracoccus denitrificans: genetics of Paracoccus denitrificans. J Bioenerg Biomembr. 1991 Apr;23(2):187–210. doi: 10.1007/BF00762217. [DOI] [PubMed] [Google Scholar]
  71. Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J., Saunders J. R. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol. 1993 Jun;139(Pt 6):1147–1153. doi: 10.1099/00221287-139-6-1147. [DOI] [PubMed] [Google Scholar]
  72. Higgins I. J., Best D. J., Hammond R. C. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature. 1980 Aug 7;286(5773):561–564. doi: 10.1038/286561a0. [DOI] [PubMed] [Google Scholar]
  73. Higgins I. J., Best D. J., Scott D. Generation of products by methanotrophs. Basic Life Sci. 1982;19:383–402. doi: 10.1007/978-1-4684-4142-0_29. [DOI] [PubMed] [Google Scholar]
  74. Hogan J. I. The research experience: from Agassiz to the Victoria embankment. Community Dent Health. 1991 Jul;8(2):181–182. [PubMed] [Google Scholar]
  75. Holmes A. J., Owens N. J., Murrell J. C. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology. 1995 Aug;141(Pt 8):1947–1955. doi: 10.1099/13500872-141-8-1947. [DOI] [PubMed] [Google Scholar]
  76. Hou C. T., Patel R., Laskin A. I., Barnabe N. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Appl Environ Microbiol. 1979 Jul;38(1):127–134. doi: 10.1128/aem.38.1.127-134.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hutton W. E., Zobell C. E. THE OCCURRENCE AND CHARACTERISTICS OF METHANE-OXIDIZING BACTERIA IN MARINE SEDIMENTS. J Bacteriol. 1949 Oct;58(4):463–473. doi: 10.1128/jb.58.4.463-473.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hyman M. R., Wood P. M. Methane oxidation by Nitrosomonas europaea. Biochem J. 1983 Apr 15;212(1):31–37. doi: 10.1042/bj2120031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. JOHNSON P. A., QUAYLE J. R. MICROBIAL GROWTH ON C1 COMPOUNDS. SYNTHESIS OF CELL CONSTITUENTS BY METHANE- AND METHANOL-GROWN PSEUDOMONAS METHANICA. Biochem J. 1965 Jun;95:859–867. doi: 10.1042/bj0950859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Jannasch H. W., Taylor C. D. Deep-sea microbiology. Annu Rev Microbiol. 1984;38:487–514. doi: 10.1146/annurev.mi.38.100184.002415. [DOI] [PubMed] [Google Scholar]
  81. Kemp M. B., Quayle J. R. Microbial growth on C1 compounds. Uptake of [14C]formaldehyde and [14C]formate by methane-grown Pseudomonas methanica and determination of the hexose labelling pattern after brief incubation with [14C]methanol. Biochem J. 1967 Jan;102(1):94–102. doi: 10.1042/bj1020094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Kightley D., Nedwell D. B., Cooper M. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol. 1995 Feb;61(2):592–601. doi: 10.1128/aem.61.2.592-601.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. King G. M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol. 1994 Sep;60(9):3220–3227. doi: 10.1128/aem.60.9.3220-3227.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. King G. M., Roslev P., Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida everglades. Appl Environ Microbiol. 1990 Sep;56(9):2902–2911. doi: 10.1128/aem.56.9.2902-2911.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. King G. M., Schnell S. Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at Low Methane Concentrations. Appl Environ Microbiol. 1994 Oct;60(10):3508–3513. doi: 10.1128/aem.60.10.3508-3513.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Koh S. C., Bowman J. P., Sayler G. S. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. 1993 Apr;59(4):960–967. doi: 10.1128/aem.59.4.960-967.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett. 1994 Mar 15;117(1):103–106. doi: 10.1111/j.1574-6968.1994.tb06749.x. [DOI] [PubMed] [Google Scholar]
  88. Lidstrom M. E. Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek. 1988;54(3):189–199. doi: 10.1007/BF00443577. [DOI] [PubMed] [Google Scholar]
  89. Lidstrom M. E., Somers L. Seasonal study of methane oxidation in lake washington. Appl Environ Microbiol. 1984 Jun;47(6):1255–1260. doi: 10.1128/aem.47.6.1255-1260.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Lidstrom M. E., Stirling D. I. Methylotrophs: genetics and commercial applications. Annu Rev Microbiol. 1990;44:27–58. doi: 10.1146/annurev.mi.44.100190.000331. [DOI] [PubMed] [Google Scholar]
  91. Lipscomb J. D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol. 1994;48:371–399. doi: 10.1146/annurev.mi.48.100194.002103. [DOI] [PubMed] [Google Scholar]
  92. Little C. D., Palumbo A. V., Herbes S. E., Lidstrom M. E., Tyndall R. L., Gilmer P. J. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol. 1988 Apr;54(4):951–956. doi: 10.1128/aem.54.4.951-956.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Machlin S. M., Hanson R. S. Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene. J Bacteriol. 1988 Oct;170(10):4739–4747. doi: 10.1128/jb.170.10.4739-4747.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Machlin S. M., Tam P. E., Bastien C. A., Hanson R. S. Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation. J Bacteriol. 1988 Jan;170(1):141–148. doi: 10.1128/jb.170.1.141-148.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Makula R. A. Phospholipid composition of methane-utilizing bacteria. J Bacteriol. 1978 Jun;134(3):771–777. doi: 10.1128/jb.134.3.771-777.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Mancinelli R. L. The regulation of methane oxidation in soil. Annu Rev Microbiol. 1995;49:581–605. doi: 10.1146/annurev.mi.49.100195.003053. [DOI] [PubMed] [Google Scholar]
  97. McCarty P. L. Bioengineering issues related to in situ remediation of contaminated soils and groundwater. Basic Life Sci. 1988;45:143–162. doi: 10.1007/978-1-4899-0824-7_9. [DOI] [PubMed] [Google Scholar]
  98. McDonald I. R., Kenna E. M., Murrell J. C. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol. 1995 Jan;61(1):116–121. doi: 10.1128/aem.61.1.116-121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. McTavish H., Fuchs J. A., Hooper A. B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol. 1993 Apr;175(8):2436–2444. doi: 10.1128/jb.175.8.2436-2444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Miller R. E., Guengerich F. P. Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450. Cancer Res. 1983 Mar;43(3):1145–1152. [PubMed] [Google Scholar]
  101. Miyata A., Yoshida T., Yamaguchi K., Yokoyama C., Tanabe T., Toh H., Mitsunaga T., Izumi Y. Molecular cloning and expression of the gene for serine hydroxymethyltransferase from an obligate methylotroph Hyphomicrobium methylovorum GM2. Eur J Biochem. 1993 Mar 15;212(3):745–750. doi: 10.1111/j.1432-1033.1993.tb17713.x. [DOI] [PubMed] [Google Scholar]
  102. Murrell J. C. Genetics and molecular biology of methanotrophs. FEMS Microbiol Rev. 1992 Jun;8(3-4):233–248. doi: 10.1111/j.1574-6968.1992.tb04990.x. [DOI] [PubMed] [Google Scholar]
  103. Murrell J. C. Molecular genetics of methane oxidation. Biodegradation. 1994 Dec;5(3-4):145–159. doi: 10.1007/BF00696456. [DOI] [PubMed] [Google Scholar]
  104. Namsaraev B. B., Zavarzin G. A. Troficheskie sviazi v kul'ture, okisliaiushchei metan. Mikrobiologiia. 1972 Nov-Dec;41(6):999–1006. [PubMed] [Google Scholar]
  105. Nguyen H. H., Shiemke A. K., Jacobs S. J., Hales B. J., Lidstrom M. E., Chan S. I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1994 May 27;269(21):14995–15005. [PubMed] [Google Scholar]
  106. Nouchi I., Mariko S., Aoki K. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants. Plant Physiol. 1990 Sep;94(1):59–66. doi: 10.1104/pp.94.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Nunn D. N., Lidstrom M. E. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J Bacteriol. 1986 May;166(2):581–590. doi: 10.1128/jb.166.2.581-590.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Oldenhuis R., Vink R. L., Janssen D. B., Witholt B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol. 1989 Nov;55(11):2819–2826. doi: 10.1128/aem.55.11.2819-2826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–365. doi: 10.1146/annurev.mi.40.100186.002005. [DOI] [PubMed] [Google Scholar]
  110. Panganiban A. T., Jr, Patt T. E., Hart W., Hanson R. S. Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol. 1979 Feb;37(2):303–309. doi: 10.1128/aem.37.2.303-309.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Patel R. N., Hou C. T., Laskin A. I., Felix A., Derelanko P. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria. J Bacteriol. 1979 Aug;139(2):675–679. doi: 10.1128/jb.139.2.675-679.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Patel R. N., Hou C. T., Laskin A. I., Felix A. Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26. Appl Environ Microbiol. 1982 Nov;44(5):1130–1137. doi: 10.1128/aem.44.5.1130-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Patel R. N., Savas J. C. Purification and properties of the hydroxylase component of methane monooxygenase. J Bacteriol. 1987 May;169(5):2313–2317. doi: 10.1128/jb.169.5.2313-2317.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Patt T. E., Cole G. C., Bland J., Hanson R. S. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol. 1974 Nov;120(2):955–964. doi: 10.1128/jb.120.2.955-964.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Patt T. E., Hanson R. S. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol. 1978 May;134(2):636–644. doi: 10.1128/jb.134.2.636-644.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Phelps P. A., Agarwal S. K., Speitel G. E., Georgiou G. Methylosinus trichosporium OB3b Mutants Having Constitutive Expression of Soluble Methane Monooxygenase in the Presence of High Levels of Copper. Appl Environ Microbiol. 1992 Nov;58(11):3701–3708. doi: 10.1128/aem.58.11.3701-3708.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Phelps T. J., Niedzielski J. J., Schram R. M., Herbes S. E., White D. C. Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. Appl Environ Microbiol. 1990 Jun;56(6):1702–1709. doi: 10.1128/aem.56.6.1702-1709.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Quayle J. R., Ferenci T. Evolutionary aspects of autotrophy. Microbiol Rev. 1978 Jun;42(2):251–273. doi: 10.1128/mr.42.2.251-273.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Quayle J. R. Microbial assimilation of C1 compounds. The Thirteenth CIBA Medal Lecture. Biochem Soc Trans. 1980 Feb;8(1):1–10. doi: 10.1042/bst0080001. [DOI] [PubMed] [Google Scholar]
  120. Reed W. M., Dugan P. R. Isolation and characterization of the facultative methylotroph Mycobacterium ID-Y. J Gen Microbiol. 1987 May;133(5):1389–1395. doi: 10.1099/00221287-133-5-1389. [DOI] [PubMed] [Google Scholar]
  121. Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science. 1990 Jun 8;248(4960):1217–1219. doi: 10.1126/science.248.4960.1217. [DOI] [PubMed] [Google Scholar]
  122. Roslev P., King G. M. Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions. Appl Environ Microbiol. 1994 Jul;60(7):2602–2608. doi: 10.1128/aem.60.7.2602-2608.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Roy R., Knowles R. Effects of methane metabolism on nitrification and nitrous oxide production in polluted freshwater sediment. Appl Environ Microbiol. 1994 Sep;60(9):3307–3314. doi: 10.1128/aem.60.9.3307-3314.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Schnell S., King G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol. 1994 Oct;60(10):3514–3521. doi: 10.1128/aem.60.10.3514-3521.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Semrau J. D., Chistoserdov A., Lebron J., Costello A., Davagnino J., Kenna E., Holmes A. J., Finch R., Murrell J. C., Lidstrom M. E. Particulate methane monooxygenase genes in methanotrophs. J Bacteriol. 1995 Jun;177(11):3071–3079. doi: 10.1128/jb.177.11.3071-3079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Semrau J. D., Zolandz D., Lidstrom M. E., Chan S. I. The role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function. J Inorg Biochem. 1995 Jun;58(4):235–244. doi: 10.1016/0162-0134(94)00056-g. [DOI] [PubMed] [Google Scholar]
  127. Shahin M. M., Von Borstel R. C. Mutagenic and lethal effects of alpha-benzene hexachloride, dibutyl phthalate and trichloroethylene in Saccharomyces cerevisiae. Mutat Res. 1977 Apr;48(2):173–180. doi: 10.1016/0027-5107(77)90157-9. [DOI] [PubMed] [Google Scholar]
  128. Shaw N. Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol. 1974;17(0):63–108. doi: 10.1016/s0065-2164(08)70555-0. [DOI] [PubMed] [Google Scholar]
  129. Smith D. D., Dalton H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem. 1989 Jul 1;182(3):667–671. doi: 10.1111/j.1432-1033.1989.tb14877.x. [DOI] [PubMed] [Google Scholar]
  130. Stainthorpe A. C., Lees V., Salmond G. P., Dalton H., Murrell J. C. The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene. 1990 Jul 2;91(1):27–34. doi: 10.1016/0378-1119(90)90158-n. [DOI] [PubMed] [Google Scholar]
  131. Stainthorpe A. C., Murrell J. C., Salmond G. P., Dalton H., Lees V. Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch Microbiol. 1989;152(2):154–159. doi: 10.1007/BF00456094. [DOI] [PubMed] [Google Scholar]
  132. Stauffer B., Fischer G., Neftel A., Oeschger H. Increase of atmospheric methane recorded in antarctic ice core. Science. 1985 Sep 27;229(4720):1386–1388. doi: 10.1126/science.229.4720.1386. [DOI] [PubMed] [Google Scholar]
  133. Stephens R. L., Haygood M. G., Lidstrom M. E. Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of moxF genes from Methylococcus capsulatus bath and Methylomonas albus BG8. J Bacteriol. 1988 May;170(5):2063–2069. doi: 10.1128/jb.170.5.2063-2069.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Stirling D. I., Dalton H. Properties of the methane mono-oxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath). Eur J Biochem. 1979 May 2;96(1):205–212. doi: 10.1111/j.1432-1033.1979.tb13030.x. [DOI] [PubMed] [Google Scholar]
  135. Strom T., Ferenci T., Quayle J. R. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J. 1974 Dec;144(3):465–476. doi: 10.1042/bj1440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Suzuki I., Kwok S. C., Dular U., Tsang D. C. Cell-free ammonia-oxidizing system of Nitrosomonas europaea: general conditions and properties. Can J Biochem. 1981 Jul;59(7):477–483. doi: 10.1139/o81-066. [DOI] [PubMed] [Google Scholar]
  137. Takeda K., Tanaka K. Ultrastructure of intracytoplasmic membranes of Methanomonas margaritae cells grown under different conditions. Antonie Van Leeuwenhoek. 1980;46(1):15–25. doi: 10.1007/BF00422225. [DOI] [PubMed] [Google Scholar]
  138. Topp E., Hanson R. S., Ringelberg D. B., White D. C., Wheatcroft R. Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl Environ Microbiol. 1993 Oct;59(10):3339–3349. doi: 10.1128/aem.59.10.3339-3349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Topp E., Knowles R. Effects of Nitrapyrin [2-Chloro-6-(Trichloromethyl) Pyridine] on the Obligate Methanotroph Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1984 Feb;47(2):258–262. doi: 10.1128/aem.47.2.258-262.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Tsang D. C., Suzuki I. Cytochrome c554 as a possible electron donor in the hydroxylation of ammonia and carbon monoxide in Nitrosomonas europaea. Can J Biochem. 1982 Nov;60(11):1018–1024. doi: 10.1139/o82-131. [DOI] [PubMed] [Google Scholar]
  141. Tsien H. C., Brusseau G. A., Hanson R. S., Waclett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1989 Dec;55(12):3155–3161. doi: 10.1128/aem.55.12.3155-3161.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Tsien H. C., Hanson R. S. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl Environ Microbiol. 1992 Mar;58(3):953–960. doi: 10.1128/aem.58.3.953-960.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Tsuji K., Tsien H. C., Hanson R. S., DePalma S. R., Scholtz R., LaRoche S. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol. 1990 Jan;136(1):1–10. doi: 10.1099/00221287-136-1-1. [DOI] [PubMed] [Google Scholar]
  144. Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol. 1985 May;49(5):1080–1083. doi: 10.1128/aem.49.5.1080-1083.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Wackett L. P., Brusseau G. A., Householder S. R., Hanson R. S. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2960–2964. doi: 10.1128/aem.55.11.2960-2964.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Wackett L. P., Gibson D. T. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol. 1988 Jul;54(7):1703–1708. doi: 10.1128/aem.54.7.1703-1708.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Waechter-Brulla D., DiSpirito A. A., Chistoserdova L. V., Lidstrom M. E. Methanol oxidation genes in the marine methanotroph Methylomonas sp. strain A4. J Bacteriol. 1993 Jun;175(12):3767–3775. doi: 10.1128/jb.175.12.3767-3775.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Whalen S. C., Reeburgh W. S., Sandbeck K. A. Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol. 1990 Nov;56(11):3405–3411. doi: 10.1128/aem.56.11.3405-3411.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  150. Wilson J. T., Wilson B. H. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol. 1985 Jan;49(1):242–243. doi: 10.1128/aem.49.1.242-243.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Wolf H. J., Christiansen M., Hanson R. S. Ultrastructure of methanotrophic yeasts. J Bacteriol. 1980 Mar;141(3):1340–1349. doi: 10.1128/jb.141.3.1340-1349.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Wolf H. J., Hanson R. S. Alcohol dehydrogenase from Methylobacterium organophilum. Appl Environ Microbiol. 1978 Jul;36(1):105–114. doi: 10.1128/aem.36.1.105-114.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Wood H. G. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 1991 Feb;5(2):156–163. doi: 10.1096/fasebj.5.2.1900793. [DOI] [PubMed] [Google Scholar]
  154. Woodland M. P., Dalton H. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1984 Jan 10;259(1):53–59. [PubMed] [Google Scholar]
  155. Yoshinari T. Nitrite and nitrous oxide production by Methylosinus trichosporium. Can J Microbiol. 1985 Feb;31(2):139–144. doi: 10.1139/m85-027. [DOI] [PubMed] [Google Scholar]
  156. Zahn J. A., Duncan C., DiSpirito A. A. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J Bacteriol. 1994 Oct;176(19):5879–5887. doi: 10.1128/jb.176.19.5879-5887.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Zehnder A. J., Brock T. D. Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol. 1980 Jan;39(1):194–204. doi: 10.1128/aem.39.1.194-204.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Zhao S. J., Hanson R. S. Variants of the Obligate Methanotroph Isolate 761M Capable of Growth on Glucose in the Absence of Methane. Appl Environ Microbiol. 1984 Oct;48(4):807–812. doi: 10.1128/aem.48.4.807-812.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES