Abstract
Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions.
Full Text
The Full Text of this article is available as a PDF (370.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aislabie J., Bej A. K., Hurst H., Rothenburger S., Atlas R. M. Microbial degradation of quinoline and methylquinolines. Appl Environ Microbiol. 1990 Feb;56(2):345–351. doi: 10.1128/aem.56.2.345-351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amador J. A., Taylor B. F. Coupled metabolic and photolytic pathway for degradation of pyridinedicarboxylic acids, especially dipicolinic Acid. Appl Environ Microbiol. 1990 May;56(5):1352–1356. doi: 10.1128/aem.56.5.1352-1356.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arima K., Kobayashi Y. BACTERIAL OXIDATION OF DIPICOLINIC ACID I. : Isolation of Microorganisms, Their Culture Conditions, and End Products. J Bacteriol. 1962 Oct;84(4):759–764. doi: 10.1128/jb.84.4.759-764.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEHRMAN E. J., STANIER R. Y. Observations on the oxidation of halogenated nicotinic acids. J Biol Chem. 1957 Oct;228(2):947–953. [PubMed] [Google Scholar]
- BEHRMAN E. J., STANIER R. Y. The bacterial oxidation of nicotinic acid. J Biol Chem. 1957 Oct;228(2):923–945. [PubMed] [Google Scholar]
- BURG R. W., RODWELL V. W., SNELL E. E. Bacterial oxidation of vitamin B6. II. Metabolites of pyridoxamine. J Biol Chem. 1960 Apr;235:1164–1169. [PubMed] [Google Scholar]
- Berry D. F., Francis A. J., Bollag J. M. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev. 1987 Mar;51(1):43–59. doi: 10.1128/mr.51.1.43-59.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bott G., Lingens F. Microbial metabolism of quinoline and related compounds. IX. Degradation of 6-hydroxyquinoline and quinoline by Pseudomonas diminuta 31/1 Fa1 and Bacillus circulans 31/2 A1. Biol Chem Hoppe Seyler. 1991 Jun;372(6):381–383. doi: 10.1515/bchm3.1991.372.1.381. [DOI] [PubMed] [Google Scholar]
- Bott G., Schmidt M., Rommel T. O., Lingens F. Microbial metabolism of quinoline and related compounds. V. Degradation of 1H-4-oxoquinoline by Pseudomonas putida 33/1. Biol Chem Hoppe Seyler. 1990 Oct;371(10):999–1003. doi: 10.1515/bchm3.1990.371.2.999. [DOI] [PubMed] [Google Scholar]
- Brockman F. J., Denovan B. A., Hicks R. J., Fredrickson J. K. Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl Environ Microbiol. 1989 Apr;55(4):1029–1032. doi: 10.1128/aem.55.4.1029-1032.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg R. W., Snell E. E. The bacterial oxidation of vitamin B6. VI. Pyridoxal dehydrogenase and 4-pyridoxolactonase. J Biol Chem. 1969 May 25;244(10):2585–2589. [PubMed] [Google Scholar]
- Cain R. B., Houghton C., Wright K. A. Microbial metabolism of the pyridine ring. Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp. Biochem J. 1974 May;140(2):293–300. doi: 10.1042/bj1400293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAGLEY S., JOHNSON P. A. MICROBIAL OXIDATION OF KYNURENIC, XANTHURENIC AND PICOLINIC ACIDS. Biochim Biophys Acta. 1963 Dec 13;78:577–587. doi: 10.1016/0006-3002(63)91023-0. [DOI] [PubMed] [Google Scholar]
- ENSIGN J. C., RITTENBERG S. C. A CRYSTALLINE PIGMENT PRODUCED FROM 2-HYDROXYPYRIDINE BY ARTHROBACTER CRYSTALLOPOIETES N.SP. Arch Mikrobiol. 1963 Dec 10;47:137–153. doi: 10.1007/BF00422519. [DOI] [PubMed] [Google Scholar]
- ENSIGN J. C., RITTENBERG S. C. THE PATHWAY OF NICOTINIC ACID OXIDATION BY A BACILLUS SPECIES. J Biol Chem. 1964 Jul;239:2285–2291. [PubMed] [Google Scholar]
- Ensign J. C., Rittenberg S. C. The formation of a blue pigment in the bacterial oxidation of isonicotinic acid. Arch Mikrobiol. 1965 Aug 17;51(4):384–392. doi: 10.1007/BF00408919. [DOI] [PubMed] [Google Scholar]
- FRANKENBURG W. G., VAITEKUNAS A. A. Chemical studies on nicotine degradation by microorganisms derived from the surface of tobacco seeds. Arch Biochem Biophys. 1955 Oct;58(2):509–512. doi: 10.1016/0003-9861(55)90154-5. [DOI] [PubMed] [Google Scholar]
- Fishbain D., Ling G., Kushner D. J. Isoniazid metabolism and binding by sensitive and resistant strains of Mycobacterium smegmatis. Can J Microbiol. 1972 Jun;18(6):783–792. doi: 10.1139/m72-123. [DOI] [PubMed] [Google Scholar]
- Gauthier J. J., Rittenberg S. C. The metabolism of nicotinic acid. I. Purification and properties of 2,5-dihydroxypyridine oxygenase from Pseudomonas putida N-9. J Biol Chem. 1971 Jun 10;246(11):3737–3742. [PubMed] [Google Scholar]
- Gauthier J. J., Rittenberg S. C. The metabolism of nicotinic acid. II. 2,5-dihydroxypyridine oxidation, product formation, and oxygen 18 incorporation. J Biol Chem. 1971 Jun 10;246(11):3743–3748. [PubMed] [Google Scholar]
- Gherna R. L., Richardson S. H., Rittenberg S. C. The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J Biol Chem. 1965 Sep;240(9):3669–3674. [PubMed] [Google Scholar]
- Grant D. J., Al-Najjar T. R. Degradation of quinoline by a soil bacterium. Microbios. 1976;15(61-62):177–189. [PubMed] [Google Scholar]
- Gupta R. C., Shukla O. P. 2-hydroxy-isonicotinic acid--an intermediate in metabolism of isonicotinic acid hydrazide & isonicotinic acid by Sarcina. Indian J Biochem Biophys. 1978 Dec;15(6):492–493. doi: 10.1203/00006450-198601000-000063. [DOI] [PubMed] [Google Scholar]
- Gupta R. C., Shukla O. P. Metabolism of isoniazid & related compounds by microorganisms: isolation, characterization & growth of isoniazid-degrading organism. Indian J Exp Biol. 1978 Oct;16(10):1047–1051. [PubMed] [Google Scholar]
- Gupta R. C., Shukla O. P. Metabolism of nicotinic acid by Sarcina sp. Indian J Biochem Biophys. 1978 Dec;15(6):462–464. [PubMed] [Google Scholar]
- Gupta R. C., Shukla O. P. Microbial metabolism of 2-hydroxypyridine. Indian J Biochem Biophys. 1975 Sep;12(3):296–298. [PubMed] [Google Scholar]
- HARARY I. Bacterial degradation of nicotinic acid. Nature. 1956 Feb 18;177(4503):328–329. doi: 10.1038/177328a0. [DOI] [PubMed] [Google Scholar]
- HARARY I. Bacterial fermantation of nicotinic acid. II. Anaerobic reversible hydroxylation of nicotinic acid to 6-hydroxynicotinic acid. J Biol Chem. 1957 Aug;227(2):823–831. [PubMed] [Google Scholar]
- HARARY I. Bacterial fermentation of nicotinic acid. I. End products. J Biol Chem. 1957 Aug;227(2):815–822. [PubMed] [Google Scholar]
- HOCHSTEIN L. I., RITTENBERG S. C. The bacterial oxidation of nicotine. II. The isolation of the first oxidative product and its identification as (1)-6-hydroxynicotine. J Biol Chem. 1959 Jan;234(1):156–160. [PubMed] [Google Scholar]
- HOCHSTEIN L. I., RITTENBERG S. C. The bacterial oxidation of nicotine. III. The isolation and identification of 6-hydroxy-pseudoxynicotine. J Biol Chem. 1960 Mar;235:795–799. [PubMed] [Google Scholar]
- HUGHES D. E. 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem J. 1955 Jun;60(2):303–310. doi: 10.1042/bj0600303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUGHES D. E. 6-hydroxy nicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochim Biophys Acta. 1952;9(2):226–227. doi: 10.1016/0006-3002(52)90153-4. [DOI] [PubMed] [Google Scholar]
- HUNT A. L., HUGHES D. E., LOWENSTEIN J. M. The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem J. 1958 Jun;69(2):170–173. doi: 10.1042/bj0690170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HYLIN J. W. The microbial degradation of nicotine. II. The mode of action of Achromobacter nicotinophagum. Arch Biochem Biophys. 1959 Aug;83:528–537. doi: 10.1016/0003-9861(59)90061-x. [DOI] [PubMed] [Google Scholar]
- Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol. 1971 Nov;108(2):751–756. doi: 10.1128/jb.108.2.751-756.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol. 1972 Oct;112(1):392–397. doi: 10.1128/jb.112.1.392-397.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. J Bacteriol. 1971 Nov;108(2):757–759. doi: 10.1128/jb.108.2.757-759.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstein L. I., Dalton B. P. The hydroxylation of nicotine: the origin of the hydroxyl oxygen. Biochem Biophys Res Commun. 1965 Dec 21;21(6):644–648. doi: 10.1016/0006-291x(65)90535-8. [DOI] [PubMed] [Google Scholar]
- Hochstein L. I., Dalton B. P. The purification and properties of nicotine oxidase. Biochim Biophys Acta. 1967 May 16;139(1):56–68. doi: 10.1016/0005-2744(67)90113-1. [DOI] [PubMed] [Google Scholar]
- Holcenberg J. S., Stadtman E. R. Nicotinic acid metabolism. 3. Purification and properties of a nicotinic acid hydroxylase. J Biol Chem. 1969 Mar 10;244(5):1194–1203. [PubMed] [Google Scholar]
- Holcenberg J. S., Tsai L. Nicotinic acid metabolism. IV. Ferredoxin-dependent reduction of 6-hydroxynicotinic acid to 6-oxo-1,4,5,6-tetrahydronicotinic acid. J Biol Chem. 1969 Mar 10;244(5):1204–1211. [PubMed] [Google Scholar]
- Holmes P. E., Rittenberg S. C., Knackmuss H. J. The bacterial oxidation of nicotine. 8. Synthesis of 2,3,6-trihydroxypyridine and accumulation and partial characterization of the product of 2,6-dihydroxypyridine oxidation. J Biol Chem. 1972 Dec 10;247(23):7628–7633. [PubMed] [Google Scholar]
- Holmes P. E., Rittenberg S. C. The bacterial oxidation of nicotine. VII. Partial purification and properties of 2,6-dihydroxypyridine oxidase. J Biol Chem. 1972 Dec 10;247(23):7622–7627. [PubMed] [Google Scholar]
- Houghton C., Cain R. B. Microbial metabolism of the pyridine ring. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by micro-organisms. Biochem J. 1972 Dec;130(3):879–893. doi: 10.1042/bj1300879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hund H. K., de Beyer A., Lingens F. Microbial metabolism of quinoline and related compounds. VI. Degradation of quinaldine by Arthrobacter sp. Biol Chem Hoppe Seyler. 1990 Oct;371(10):1005–1008. doi: 10.1515/bchm3.1990.371.2.1005. [DOI] [PubMed] [Google Scholar]
- IKAWA M., RODWELL V. W., SNELL E. E. Bacterial oxidation of vitamin B6. II. Structure of 260 compound. J Biol Chem. 1958 Dec;233(6):1555–1559. [PubMed] [Google Scholar]
- Jones M. V., Hughes D. E. The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase. Biochem J. 1972 Sep;129(3):755–761. doi: 10.1042/bj1290755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOBAYASHI Y., ARIMA K. Bacterial oxidation of dipicolinic acid. II. Identification of alpha-ketoglutaric acid and 3-hydroxydipicolinic acid and some properties of cell-free extracts. J Bacteriol. 1962 Oct;84:765–771. doi: 10.1128/jb.84.4.765-771.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser J. P., Minard R. D., Bollag J. M. Transformation of 3- and 4-Picoline under Sulfate-Reducing Conditions. Appl Environ Microbiol. 1993 Mar;59(3):701–705. doi: 10.1128/aem.59.3.701-705.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna M., Shukla O. P. Microbial metabolism of 3-hydroxypyridine. Indian J Biochem Biophys. 1977 Sep;14(3):301–302. [PubMed] [Google Scholar]
- Kolenbrander P. E., Lotong N., Ensign J. C. Growth and pigment production by Arthrobacter pyridinolis n. sp. Arch Microbiol. 1976 Nov 2;110(23):239–245. doi: 10.1007/BF00690233. [DOI] [PubMed] [Google Scholar]
- Kolenbrander P. E., Weinberger M. 2-Hydroxypyridine metabolism and pigment formation in three Arthrobacter species. J Bacteriol. 1977 Oct;132(1):51–59. doi: 10.1128/jb.132.1.51-59.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kung H., Tsai L. Nicotinic acid metabolism. VII. Mechanisms of action of clostridial -methyleneglutarate mutase (B 12 -dependent) and methylitaconate isomerase. J Biol Chem. 1971 Nov;246(21):6436–6443. [PubMed] [Google Scholar]
- Kung H., Tsai L., Stadtman T. C. Nicotinic acid metabolism. 8. Tracer studies on the intermediary roles of -methyleneglutarate, methylitaconate, dimethylmaleate, and pyruvate. J Biol Chem. 1971 Nov;246(21):6444–6451. [PubMed] [Google Scholar]
- Nyns E. J., Zach D., Snell E. E. The bacterial oxidation of vitamin B6. 8. Enzymatic breakdown of alpha-(N-acetylaminomethylene) succinic acid. J Biol Chem. 1969 May 25;244(10):2601–2605. [PubMed] [Google Scholar]
- Orpin C. G., Knight M., Evans W. C. The bacterial oxidation of N-methylisonicotinate, a photolytic product of paraquat. Biochem J. 1972 May;127(5):833–844. doi: 10.1042/bj1270833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orpin C. G., Knight M., Evans W. C. The bacterial oxidation of N-methylisonicotinate. Biochem J. 1971 May;122(5):58P–58P. doi: 10.1042/bj1220058pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orpin C. G., Knight M., Evans W. C. The bacterial oxidation of picolinamide, a photolytic product of Diquat. Biochem J. 1972 May;127(5):819–831. doi: 10.1042/bj1270819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PASTAN I., TSAI L., STADTMAN E. R. NICOTINIC ACID METABOLISM. I. DISTRIBUTION OF ISOTOPE IN FERMENTATION PRODUCTS OF LABELLED NICOTINIC ACID. J Biol Chem. 1964 Mar;239:902–906. [PubMed] [Google Scholar]
- Pereira W. E., Rostad C. E., Leiker T. J., Updegraff D. M., Bennett J. L. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water. Appl Environ Microbiol. 1988 Mar;54(3):827–829. doi: 10.1128/aem.54.3.827-829.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON S. H., RITTENBERG S. C. The bacterial oxidation of nicotine. IV. The isolation and identification of 2,6-dihydroxy-N-methylmyosmine. J Biol Chem. 1961 Mar;236:959–963. [PubMed] [Google Scholar]
- RICHARDSON S. H., RITTENBERG S. C. The bacterial oxidation of nicotine. V. Identification of 2,6-dihydroxypseudooxy-nicotine as the third oxidative product. J Biol Chem. 1961 Mar;236:964–967. [PubMed] [Google Scholar]
- RODWELL V. W., VOLCANI B. E., IKAWA M., SNELL E. E. Bacterial oxidation of vitamin B6. I. Isopyridoxal and 5-pyridoxic acid. J Biol Chem. 1958 Dec;233(6):1548–1554. [PubMed] [Google Scholar]
- Röger P., Erben A., Lingens F. Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7. Biol Chem Hoppe Seyler. 1990 Jun;371(6):511–513. doi: 10.1515/bchm3.1990.371.1.511. [DOI] [PubMed] [Google Scholar]
- Rüger A., Schwarz G., Lingens F. Microbial metabolism of quinoline and related compounds. XIX. Degradation of 4-methylquinoline and quinoline by Pseudomonas putida K1. Biol Chem Hoppe Seyler. 1993 Jul;374(7):479–488. doi: 10.1515/bchm3.1993.374.7-12.479. [DOI] [PubMed] [Google Scholar]
- Schach S., Schwarz G., Fetzner S., Lingens F. Microbial metabolism of quinoline and related compounds. XVII. Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biol Chem Hoppe Seyler. 1993 Mar;374(3):175–181. doi: 10.1515/bchm3.1993.374.1-6.175. [DOI] [PubMed] [Google Scholar]
- Schmidt M., Röger P., Lingens F. Microbial metabolism of quinoline and related compounds. XI. Degradation of quinoline-4-carboxylic acid by Microbacterium sp. H2, Agrobacterium sp. 1B and Pimelobacter simplex 4B and 5B. Biol Chem Hoppe Seyler. 1991 Nov;372(11):1015–1020. doi: 10.1515/bchm3.1991.372.2.1015. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Bauder R., Speer M., Rommel T. O., Lingens F. Microbial metabolism of quinoline and related compounds. II. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86 and Rhodococcus spec. B1. Biol Chem Hoppe Seyler. 1989 Nov;370(11):1183–1189. doi: 10.1515/bchm3.1989.370.2.1183. [DOI] [PubMed] [Google Scholar]
- Seyfried B., Schink B. Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria. Biodegradation. 1990;1(1):1–7. doi: 10.1007/BF00117046. [DOI] [PubMed] [Google Scholar]
- Shukla O. P. Isolation, characterization & metabolic activities of a Bacillus sp. metabolizing alpha-picolinate. Indian J Exp Biol. 1975 Jan;13(1):80–82. [PubMed] [Google Scholar]
- Shukla O. P., Kaul S. M. A constitutive pyridine degrading system in Corynebacterium sp. Indian J Biochem Biophys. 1974 Sep;11(3):201–207. [PubMed] [Google Scholar]
- Shukla O. P., Kaul S. M., Khanna M. Microbial transformation of pyridine derivatives: alpha-picolinate metabolism by a gram-negative coccus. Indian J Biochem Biophys. 1977 Sep;14(3):292–295. [PubMed] [Google Scholar]
- Shukla O. P., Kaul S. M. Microbial transformation of alpha-picolinate by Bacillus sp. Indian J Biochem Biophys. 1973 Sep;10(3):176–178. [PubMed] [Google Scholar]
- Shukla O. P. Microbial Decomposition of alpha-Picoline. Indian J Biochem Biophys. 1974 Sep;11(3):192–200. [PubMed] [Google Scholar]
- Shukla O. P. Microbial decomposition of pyridine. Indian J Exp Biol. 1973 Sep;11(5):463–465. [PubMed] [Google Scholar]
- Shukla O. P. Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol. 1986 Jun;51(6):1332–1342. doi: 10.1128/aem.51.6.1332-1342.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims G. K., O'loughlin E. J. Riboflavin Production during Growth of Micrococcus luteus on Pyridine. Appl Environ Microbiol. 1992 Oct;58(10):3423–3425. doi: 10.1128/aem.58.10.3423-3425.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims G. K., Sommers L. E., Konopka A. Degradation of Pyridine by Micrococcus luteus Isolated from Soil. Appl Environ Microbiol. 1986 May;51(5):963–968. doi: 10.1128/aem.51.5.963-968.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh B., Kumar P., Bansal R. C., Nagpaul J. P., Sharma R. Rat kidney alkaline phosphatase : essential groups in catalysis & isatin inhibition. Indian J Biochem Biophys. 1977 Mar;14(1):88–89. [PubMed] [Google Scholar]
- Sparrow L. G., Ho P. P., Sundaram T. K., Zach D., Nyns E. J., Snell E. E. The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring. J Biol Chem. 1969 May 25;244(10):2590–2600. [PubMed] [Google Scholar]
- Stadtman E. R., Stadtman T. C., Pastan I., Smith L. D. Clostridium barkeri sp. n. J Bacteriol. 1972 May;110(2):758–760. doi: 10.1128/jb.110.2.758-760.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundaram T. K., Snell E. E. The bacterial oxidation of vitamin B6. V. The enzymatic formation of pyridoxal and isopyridoxal from pyridoxine. J Biol Chem. 1969 May 25;244(10):2577–2584. [PubMed] [Google Scholar]
- TANIUCHI H., HAYAISHI O. Studies on the metabolism of kynurenic acid. III. Enzymatic formation of 7,8-dihydroxykynurenic acid from kynurenic acid. J Biol Chem. 1963 Jan;238:283–293. [PubMed] [Google Scholar]
- TANIUCHI H., TASHIRO M., HORIBATA K., KUNO S., HAYAISHI O., SAKAN T., SENOH S., TOKUYAMA T. The enzymic formation of 7,8-dihydroxykynurenic acid from kynurenic acid. Biochim Biophys Acta. 1960 Sep 23;43:356–357. doi: 10.1016/0006-3002(60)90455-8. [DOI] [PubMed] [Google Scholar]
- Tate R. L., Ensign J. C. A new species of Arthrobacter which degrades picolinic acid. Can J Microbiol. 1974 May;20(5):691–694. doi: 10.1139/m74-105. [DOI] [PubMed] [Google Scholar]
- Tate R. L., Ensign J. C. Picolinic acid hydroxylase of Arthrobacter picolinophilus. Can J Microbiol. 1974 May;20(5):695–702. doi: 10.1139/m74-106. [DOI] [PubMed] [Google Scholar]
- Taylor B. F., Amador J. A. Metabolism of pyridine compounds by phthalate-degrading bacteria. Appl Environ Microbiol. 1988 Oct;54(10):2342–2344. doi: 10.1128/aem.54.10.2342-2344.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai L., Pastan I., Stadtman E. R. Nicotinic acid metabolism. II. The isolation and characterization of intermediates in the fermentation of nicotinic acid. J Biol Chem. 1966 Apr 25;241(8):1807–1813. [PubMed] [Google Scholar]
- Unkefer C. J., London R. E. In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy. J Biol Chem. 1984 Feb 25;259(4):2311–2320. [PubMed] [Google Scholar]
- WADA E. Microbial degradation of nornicotine. Arch Biochem Biophys. 1956 Sep;64(1):244–246. doi: 10.1016/0003-9861(56)90258-2. [DOI] [PubMed] [Google Scholar]
- WADA E. Microbial degradation of the tobacco alkaloids, and some related compounds. Arch Biochem Biophys. 1957 Nov;72(1):145–162. doi: 10.1016/0003-9861(57)90181-9. [DOI] [PubMed] [Google Scholar]
- Wang Y. T., Suidan M. T., Pfeffer J. T. Anaerobic biodegradation of indole to methane. Appl Environ Microbiol. 1984 Nov;48(5):1058–1060. doi: 10.1128/aem.48.5.1058-1060.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson G. K., Cain R. B. Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochem J. 1975 Jan;146(1):157–172. doi: 10.1042/bj1460157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson G. K., Houghton C., Cain R. B. Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine-3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine-3-hydroxylase. Biochem J. 1974 May;140(2):265–276. doi: 10.1042/bj1400265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson G. K., Houghton C., Cain R. B. Microbial metabolism of the pyridine ring. The metabolism of pyridine-3,4-diol (3,4-dihydroxypyridine) by Agrobacterium sp. Biochem J. 1974 May;140(2):277–292. doi: 10.1042/bj1400277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright K. A., Cain R. B. Microbial metabolism of pyridinium compounds. Metabolism of 4-carboxy-1-methylpyridinium chloride, a photolytic product of paraquat. Biochem J. 1972 Jul;128(3):543–559. doi: 10.1042/bj1280543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright K. A., Cain R. B. Microbial metabolism of pyridinium compounds. Radioisotope studies of the metabolic fat of 4-carboxy-1-methylpyridinium chloride. Biochem J. 1972 Jul;128(3):561–568. doi: 10.1042/bj1280561. [DOI] [PMC free article] [PubMed] [Google Scholar]