Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1996 Sep;60(3):512–538. doi: 10.1128/mr.60.3.512-538.1996

Strategies for achieving high-level expression of genes in Escherichia coli.

S C Makrides 1
PMCID: PMC239455  PMID: 8840785

Abstract

Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.

Full Text

The Full Text of this article is available as a PDF (434.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahmsén L., Moks T., Nilsson B., Uhlén M. Secretion of heterologous gene products to the culture medium of Escherichia coli. Nucleic Acids Res. 1986 Sep 25;14(18):7487–7500. doi: 10.1093/nar/14.18.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams J. M. On the release of the formyl group from nascent protein. J Mol Biol. 1968 May 14;33(3):571–589. doi: 10.1016/0022-2836(68)90307-0. [DOI] [PubMed] [Google Scholar]
  3. Adams T. E., MacIntosh B., Brandon M. R., Wordsworth P., Puri N. K. Production of methionyl-minus ovine growth hormone in Escherichia coli and one-step purification. Gene. 1992 Dec 15;122(2):371–375. doi: 10.1016/0378-1119(92)90229-i. [DOI] [PubMed] [Google Scholar]
  4. Adari H., Andrews B., Ford P. J., Hannig G., Brosius J., Makrides S. C. Expression of the human T-cell receptor V beta 5.3 in Escherichia coli by thermal induction of the trc promoter: nucleotide sequence of the lacIts gene. DNA Cell Biol. 1995 Nov;14(11):945–950. doi: 10.1089/dna.1995.14.945. [DOI] [PubMed] [Google Scholar]
  5. Adhya S., Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982 Jul;29(3):939–944. doi: 10.1016/0092-8674(82)90456-1. [DOI] [PubMed] [Google Scholar]
  6. Airenne K. J., Kulomaa M. S. Rapid purification of recombinant proteins fused to chicken avidin. Gene. 1995 Dec 29;167(1-2):63–68. doi: 10.1016/0378-1119(95)00631-1. [DOI] [PubMed] [Google Scholar]
  7. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  8. Amrein K. E., Takacs B., Stieger M., Molnos J., Flint N. A., Burn P. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1048–1052. doi: 10.1073/pnas.92.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Aristidou A. A., San K. Y., Bennett G. N. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol Prog. 1995 Jul-Aug;11(4):475–478. doi: 10.1021/bp00034a019. [DOI] [PubMed] [Google Scholar]
  10. Bachmair A., Finley D., Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986 Oct 10;234(4773):179–186. doi: 10.1126/science.3018930. [DOI] [PubMed] [Google Scholar]
  11. Bachmair A., Varshavsky A. The degradation signal in a short-lived protein. Cell. 1989 Mar 24;56(6):1019–1032. doi: 10.1016/0092-8674(89)90635-1. [DOI] [PubMed] [Google Scholar]
  12. Backman K., Ptashne M., Gilbert W. Construction of plasmids carrying the cI gene of bacteriophage lambda. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4174–4178. doi: 10.1073/pnas.73.11.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Backman K., Ptashne M. Maximizing gene expression on a plasmid using recombination in vitro. Cell. 1978 Jan;13(1):65–71. doi: 10.1016/0092-8674(78)90138-1. [DOI] [PubMed] [Google Scholar]
  14. Baker R. T., Smith S. A., Marano R., McKee J., Board P. G. Protein expression using cotranslational fusion and cleavage of ubiquitin. Mutagenesis of the glutathione-binding site of human Pi class glutathione S-transferase. J Biol Chem. 1994 Oct 14;269(41):25381–25386. [PubMed] [Google Scholar]
  15. Baker T. A., Grossman A. D., Gross C. A. A gene regulating the heat shock response in Escherichia coli also affects proteolysis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6779–6783. doi: 10.1073/pnas.81.21.6779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Balakrishnan R., Bolten B., Backman K. C. A gene cassette for adapting Escherichia coli strains as hosts for att-Int-mediated rearrangement and pL expression vectors. Gene. 1994 Jan 28;138(1-2):101–104. doi: 10.1016/0378-1119(94)90788-9. [DOI] [PubMed] [Google Scholar]
  17. Balbas P., Bolivar F. Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol. 1990;185:14–37. doi: 10.1016/0076-6879(90)85005-9. [DOI] [PubMed] [Google Scholar]
  18. Baneyx F., Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol. 1991 Apr;173(8):2696–2703. doi: 10.1128/jb.173.8.2696-2703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Baneyx F., Georgiou G. Degradation of secreted proteins in Escherichia coli. Ann N Y Acad Sci. 1992 Oct 13;665:301–308. doi: 10.1111/j.1749-6632.1992.tb42593.x. [DOI] [PubMed] [Google Scholar]
  20. Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
  21. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  22. Barrick D., Villanueba K., Childs J., Kalil R., Schneider T. D., Lawrence C. E., Gold L., Stormo G. D. Quantitative analysis of ribosome binding sites in E.coli. Nucleic Acids Res. 1994 Apr 11;22(7):1287–1295. doi: 10.1093/nar/22.7.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Battistoni A., Carri M. T., Steinkühler C., Rotilio G. Chaperonins dependent increase of Cu,Zn superoxide dismutase production in Escherichia coli. FEBS Lett. 1993 May 3;322(1):6–9. doi: 10.1016/0014-5793(93)81099-l. [DOI] [PubMed] [Google Scholar]
  24. Bauer K. A., Ben-Bassat A., Dawson M., de la Puente V. T., Neway J. O. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl Environ Microbiol. 1990 May;56(5):1296–1302. doi: 10.1128/aem.56.5.1296-1302.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bechhofer D. H., Dubnau D. Induced mRNA stability in Bacillus subtilis. Proc Natl Acad Sci U S A. 1987 Jan;84(2):498–502. doi: 10.1073/pnas.84.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Becker J., Craig E. A. Heat-shock proteins as molecular chaperones. Eur J Biochem. 1994 Jan 15;219(1-2):11–23. doi: 10.1007/978-3-642-79502-2_2. [DOI] [PubMed] [Google Scholar]
  27. Bedouelle H., Duplay P. Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space. Eur J Biochem. 1988 Feb 1;171(3):541–549. doi: 10.1111/j.1432-1033.1988.tb13823.x. [DOI] [PubMed] [Google Scholar]
  28. Belasco J. G., Higgins C. F. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. doi: 10.1016/0378-1119(88)90123-0. [DOI] [PubMed] [Google Scholar]
  29. Belasco J. G., Nilsson G., von Gabain A., Cohen S. N. The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell. 1986 Jul 18;46(2):245–251. doi: 10.1016/0092-8674(86)90741-5. [DOI] [PubMed] [Google Scholar]
  30. Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Berg K. L., Squires C., Squires C. L. Ribosomal RNA operon anti-termination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. J Mol Biol. 1989 Oct 5;209(3):345–358. doi: 10.1016/0022-2836(89)90002-8. [DOI] [PubMed] [Google Scholar]
  32. Bernard H. U., Remaut E., Hershfield M. V., Das H. K., Helinski D. R., Yanofsky C., Franklin N. Construction of plasmid cloning vehicles that promote gene expression from the bacteriophage lambda pL promoter. Gene. 1979 Jan;5(1):59–76. doi: 10.1016/0378-1119(79)90092-1. [DOI] [PubMed] [Google Scholar]
  33. Better M., Chang C. P., Robinson R. R., Horwitz A. H. Escherichia coli secretion of an active chimeric antibody fragment. Science. 1988 May 20;240(4855):1041–1043. doi: 10.1126/science.3285471. [DOI] [PubMed] [Google Scholar]
  34. Betton J. M., Hofnung M. Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J Biol Chem. 1996 Apr 5;271(14):8046–8052. doi: 10.1074/jbc.271.14.8046. [DOI] [PubMed] [Google Scholar]
  35. Birikh K. R., Lebedenko E. N., Boni I. V., Berlin Y. A. A high-level prokaryotic expression system: synthesis of human interleukin 1 alpha and its receptor antagonist. Gene. 1995 Oct 27;164(2):341–345. doi: 10.1016/0378-1119(95)00488-r. [DOI] [PubMed] [Google Scholar]
  36. Bishai W. R., Rappuoli R., Murphy J. R. High-level expression of a proteolytically sensitive diphtheria toxin fragment in Escherichia coli. J Bacteriol. 1987 Nov;169(11):5140–5151. doi: 10.1128/jb.169.11.5140-5151.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Björnsson A., Mottagui-Tabar S., Isaksson L. A. Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J. 1996 Apr 1;15(7):1696–1704. [PMC free article] [PubMed] [Google Scholar]
  38. Blackwell J. R., Horgan R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 1991 Dec 16;295(1-3):10–12. doi: 10.1016/0014-5793(91)81372-f. [DOI] [PubMed] [Google Scholar]
  39. Blight M. A., Chervaux C., Holland I. B. Protein secretion pathway in Escherichia coli. Curr Opin Biotechnol. 1994 Oct;5(5):468–474. doi: 10.1016/0958-1669(94)90059-0. [DOI] [PubMed] [Google Scholar]
  40. Blondel A., Nageotte R., Bedouelle H. Destabilizing interactions between the partners of a bifunctional fusion protein. Protein Eng. 1996 Feb;9(2):231–238. doi: 10.1093/protein/9.2.231. [DOI] [PubMed] [Google Scholar]
  41. Blum P., Ory J., Bauernfeind J., Krska J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7436–7444. doi: 10.1128/jb.174.22.7436-7444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Blum P., Velligan M., Lin N., Matin A. DnaK-mediated alterations in human growth hormone protein inclusion bodies. Biotechnology (N Y) 1992 Mar;10(3):301–304. doi: 10.1038/nbt0392-301. [DOI] [PubMed] [Google Scholar]
  43. Boni I. V., Isaeva D. M., Musychenko M. L., Tzareva N. V. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 1991 Jan 11;19(1):155–162. doi: 10.1093/nar/19.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Bowden G. A., Baneyx F., Georgiou G. Abnormal fractionation of beta-lactamase in Escherichia coli: evidence for an interaction with the inner membrane in the absence of a leader peptide. J Bacteriol. 1992 May;174(10):3407–3410. doi: 10.1128/jb.174.10.3407-3410.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Bowden G. A., Georgiou G. Folding and aggregation of beta-lactamase in the periplasmic space of Escherichia coli. J Biol Chem. 1990 Oct 5;265(28):16760–16766. [PubMed] [Google Scholar]
  46. Bowden G. A., Paredes A. M., Georgiou G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N Y) 1991 Aug;9(8):725–730. doi: 10.1038/nbt0891-725. [DOI] [PubMed] [Google Scholar]
  47. Bowie J. U., Sauer R. T. Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J Biol Chem. 1989 May 5;264(13):7596–7602. [PubMed] [Google Scholar]
  48. Brinkmann U., Mattes R. E., Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 1989 Dec 21;85(1):109–114. doi: 10.1016/0378-1119(89)90470-8. [DOI] [PubMed] [Google Scholar]
  49. Brizzard B. L., Chubet R. G., Vizard D. L. Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques. 1994 Apr;16(4):730–735. [PubMed] [Google Scholar]
  50. Brosius J. Compilation of superlinker vectors. Methods Enzymol. 1992;216:469–483. doi: 10.1016/0076-6879(92)16043-j. [DOI] [PubMed] [Google Scholar]
  51. Brosius J., Erfle M., Storella J. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem. 1985 Mar 25;260(6):3539–3541. [PubMed] [Google Scholar]
  52. Brosius J., Holy A. Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6929–6933. doi: 10.1073/pnas.81.22.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Brosius J., Ullrich A., Raker M. A., Gray A., Dull T. J., Gutell R. R., Noller H. F. Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid. 1981 Jul;6(1):112–118. doi: 10.1016/0147-619x(81)90058-5. [DOI] [PubMed] [Google Scholar]
  54. Brown W. C., Campbell J. L. A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene. 1993 May 15;127(1):99–103. doi: 10.1016/0378-1119(93)90622-a. [DOI] [PubMed] [Google Scholar]
  55. Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J. 1996 Jan;10(1):10–19. [PubMed] [Google Scholar]
  56. Buell G., Schulz M. F., Selzer G., Chollet A., Movva N. R., Semon D., Escanez S., Kawashima E. Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I). Nucleic Acids Res. 1985 Mar 25;13(6):1923–1938. doi: 10.1093/nar/13.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Bujard H., Gentz R., Lanzer M., Stueber D., Mueller M., Ibrahimi I., Haeuptle M. T., Dobberstein B. A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol. 1987;155:416–433. doi: 10.1016/0076-6879(87)55028-5. [DOI] [PubMed] [Google Scholar]
  58. Bukrinsky M. I., Barsov E. V., Shilov A. A. Multicopy expression vector based on temperature-regulated lac repressor: expression of human immunodeficiency virus env gene in Escherichia coli. Gene. 1988 Oct 30;70(2):415–417. doi: 10.1016/0378-1119(88)90215-6. [DOI] [PubMed] [Google Scholar]
  59. Bula C., Wilcox K. W. Negative effect of sequential serine codons on expression of foreign genes in Escherichia coli. Protein Expr Purif. 1996 Feb;7(1):92–103. doi: 10.1006/prep.1996.0013. [DOI] [PubMed] [Google Scholar]
  60. Bulmer M. Codon usage and intragenic position. J Theor Biol. 1988 Jul 8;133(1):67–71. doi: 10.1016/s0022-5193(88)80024-9. [DOI] [PubMed] [Google Scholar]
  61. Butler J. S., Springer M., Grunberg-Manago M. AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4022–4025. doi: 10.1073/pnas.84.12.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Butt T. R., Jonnalagadda S., Monia B. P., Sternberg E. J., Marsh J. A., Stadel J. M., Ecker D. J., Crooke S. T. Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2540–2544. doi: 10.1073/pnas.86.8.2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Cabilly S. Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in Escherichia coli. Gene. 1989 Dec 28;85(2):553–557. doi: 10.1016/0378-1119(89)90451-4. [DOI] [PubMed] [Google Scholar]
  64. Caspers P., Stieger M., Burn P. Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosine kinases in Escherichia coli. Cell Mol Biol (Noisy-le-grand) 1994 Jul;40(5):635–644. [PubMed] [Google Scholar]
  65. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  66. Chalmers J. J., Kim E., Telford J. N., Wong E. Y., Tacon W. C., Shuler M. L., Wilson D. B. Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl Environ Microbiol. 1990 Jan;56(1):104–111. doi: 10.1128/aem.56.1.104-111.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Chamberlin M. J. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 1992 1993;88:1–21. [PubMed] [Google Scholar]
  68. Chang C. N., Kuang W. J., Chen E. Y. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Gene. 1986;44(1):121–125. doi: 10.1016/0378-1119(86)90050-8. [DOI] [PubMed] [Google Scholar]
  69. Charbit A., Molla A., Saurin W., Hofnung M. Versatility of a vector for expressing foreign polypeptides at the surface of gram-negative bacteria. Gene. 1988 Oct 15;70(1):181–189. doi: 10.1016/0378-1119(88)90116-3. [DOI] [PubMed] [Google Scholar]
  70. Chau V., Tobias J. W., Bachmair A., Marriott D., Ecker D. J., Gonda D. K., Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 1989 Mar 24;243(4898):1576–1583. doi: 10.1126/science.2538923. [DOI] [PubMed] [Google Scholar]
  71. Cheah K. C., Harrison S., King R., Crocker L., Wells J. R., Robins A. Secretion of eukaryotic growth hormones in Escherichia coli is influenced by the sequence of the mature proteins. Gene. 1994 Jan 28;138(1-2):9–15. doi: 10.1016/0378-1119(94)90777-3. [DOI] [PubMed] [Google Scholar]
  72. Chen B. P., Hai T. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host. Gene. 1994 Feb 11;139(1):73–75. doi: 10.1016/0378-1119(94)90525-8. [DOI] [PubMed] [Google Scholar]
  73. Chen C. Y., Beatty J. T., Cohen S. N., Belasco J. G. An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell. 1988 Feb 26;52(4):609–619. doi: 10.1016/0092-8674(88)90473-4. [DOI] [PubMed] [Google Scholar]
  74. Chen C. Y., Belasco J. G. Degradation of pufLMX mRNA in Rhodobacter capsulatus is initiated by nonrandom endonucleolytic cleavage. J Bacteriol. 1990 Aug;172(8):4578–4586. doi: 10.1128/jb.172.8.4578-4586.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Chen G. F., Inouye M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 1990 Mar 25;18(6):1465–1473. doi: 10.1093/nar/18.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Chen G. T., Inouye M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev. 1994 Nov 1;8(21):2641–2652. doi: 10.1101/gad.8.21.2641. [DOI] [PubMed] [Google Scholar]
  77. Chen H., Bjerknes M., Kumar R., Jay E. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res. 1994 Nov 25;22(23):4953–4957. doi: 10.1093/nar/22.23.4953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Chen H., Pomeroy-Cloney L., Bjerknes M., Tam J., Jay E. The influence of adenine-rich motifs in the 3' portion of the ribosome binding site on human IFN-gamma gene expression in Escherichia coli. J Mol Biol. 1994 Jul 1;240(1):20–27. doi: 10.1006/jmbi.1994.1414. [DOI] [PubMed] [Google Scholar]
  79. Chen K. S., Peters T. C., Walker J. R. A minor arginine tRNA mutant limits translation preferentially of a protein dependent on the cognate codon. J Bacteriol. 1990 May;172(5):2504–2510. doi: 10.1128/jb.172.5.2504-2510.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Chen L. H., Emory S. A., Bricker A. L., Bouvet P., Belasco J. G. Structure and function of a bacterial mRNA stabilizer: analysis of the 5' untranslated region of ompA mRNA. J Bacteriol. 1991 Aug;173(15):4578–4586. doi: 10.1128/jb.173.15.4578-4586.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Chen W., Kallio P. T., Bailey J. E. Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli. Gene. 1993 Aug 16;130(1):15–22. doi: 10.1016/0378-1119(93)90341-y. [DOI] [PubMed] [Google Scholar]
  82. Chen W., Kallio P. T., Bailey J. E. Process characterization of a novel cross-regulation system for cloned protein production in Escherichia coli. Biotechnol Prog. 1995 Jul-Aug;11(4):397–402. doi: 10.1021/bp00034a006. [DOI] [PubMed] [Google Scholar]
  83. Cheng Y. S., Kwoh D. Y., Kwoh T. J., Soltvedt B. C., Zipser D. Stabilization of a degradable protein by its overexpression in Escherichia coli. Gene. 1981 Jun-Jul;14(1-2):121–130. doi: 10.1016/0378-1119(81)90154-2. [DOI] [PubMed] [Google Scholar]
  84. Chopra A. K., Brasier A. R., Das M., Xu X. J., Peterson J. W. Improved synthesis of Salmonella typhimurium enterotoxin using gene fusion expression systems. Gene. 1994 Jun 24;144(1):81–85. doi: 10.1016/0378-1119(94)90207-0. [DOI] [PubMed] [Google Scholar]
  85. Clarke A. R. Molecular chaperones in protein folding and translocation. Curr Opin Struct Biol. 1996 Feb;6(1):43–50. doi: 10.1016/s0959-440x(96)80093-5. [DOI] [PubMed] [Google Scholar]
  86. Cloney L. P., Bekkaoui D. R., Hemmingsen S. M. Co-expression of plastid chaperonin genes and a synthetic plant Rubisco operon in Escherichia coli. Plant Mol Biol. 1993 Dec;23(6):1285–1290. doi: 10.1007/BF00042362. [DOI] [PubMed] [Google Scholar]
  87. Cole P. A. Chaperone-assisted protein expression. Structure. 1996 Mar 15;4(3):239–242. doi: 10.1016/s0969-2126(96)00028-7. [DOI] [PubMed] [Google Scholar]
  88. Coleman J., Inouye M., Nakamura K. Mutations upstream of the ribosome-binding site affect translational efficiency. J Mol Biol. 1985 Jan 5;181(1):139–143. doi: 10.1016/0022-2836(85)90332-8. [DOI] [PubMed] [Google Scholar]
  89. Collier D. N., Strobel S. M., Bassford P. J., Jr SecB-independent export of Escherichia coli ribose-binding protein (RBP): some comparisons with export of maltose-binding protein (MBP) and studies with RBP-MBP hybrid proteins. J Bacteriol. 1990 Dec;172(12):6875–6884. doi: 10.1128/jb.172.12.6875-6884.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Collins-Racie L. A., McColgan J. M., Grant K. L., DiBlasio-Smith E. A., McCoy J. M., LaVallie E. R. Production of recombinant bovine enterokinase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Biotechnology (N Y) 1995 Sep;13(9):982–987. doi: 10.1038/nbt0995-982. [DOI] [PubMed] [Google Scholar]
  91. Condon C., Squires C., Squires C. L. Control of rRNA transcription in Escherichia coli. Microbiol Rev. 1995 Dec;59(4):623–645. doi: 10.1128/mr.59.4.623-645.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Cornelis P., Sierra J. C., Lim A., Jr, Malur A., Tungpradabkul S., Tazka H., Leitão A., Martins C. V., di Perna C., Brys L. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli. Biotechnology (N Y) 1996 Feb;14(2):203–208. doi: 10.1038/nbt0296-203. [DOI] [PubMed] [Google Scholar]
  93. Craigen W. J., Lee C. C., Caskey C. T. Recent advances in peptide chain termination. Mol Microbiol. 1990 Jun;4(6):861–865. doi: 10.1111/j.1365-2958.1990.tb00658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996 Mar;14(3):315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  95. Cronan J. E., Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990 Jun 25;265(18):10327–10333. [PubMed] [Google Scholar]
  96. Cull M. G., Miller J. F., Schatz P. J. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1865–1869. doi: 10.1073/pnas.89.5.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Dale G. E., Broger C., Langen H., D'Arcy A., Stüber D. Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng. 1994 Jul;7(7):933–939. doi: 10.1093/protein/7.7.933. [DOI] [PubMed] [Google Scholar]
  98. Dale G. E., Schönfeld H. J., Langen H., Stieger M. Increased solubility of trimethoprim-resistant type S1 DHFR from Staphylococcus aureus in Escherichia coli cells overproducing the chaperonins GroEL and GroES. Protein Eng. 1994 Jul;7(7):925–931. doi: 10.1093/protein/7.7.925. [DOI] [PubMed] [Google Scholar]
  99. Das A. Overproduction of proteins in Escherichia coli: vectors, hosts, and strategies. Methods Enzymol. 1990;182:93–112. doi: 10.1016/0076-6879(90)82011-p. [DOI] [PubMed] [Google Scholar]
  100. Datar R. V., Cartwright T., Rosen C. G. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology (N Y) 1993 Mar;11(3):349–357. doi: 10.1038/nbt0393-349. [DOI] [PubMed] [Google Scholar]
  101. De Sutter K., Hostens K., Vandekerckhove J., Fiers W. Production of enzymatically active rat protein disulfide isomerase in Escherichia coli. Gene. 1994 Apr 20;141(2):163–170. doi: 10.1016/0378-1119(94)90566-5. [DOI] [PubMed] [Google Scholar]
  102. Del Tito B. J., Jr, Ward J. M., Hodgson J., Gershater C. J., Edwards H., Wysocki L. A., Watson F. A., Sathe G., Kane J. F. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J Bacteriol. 1995 Dec;177(24):7086–7091. doi: 10.1128/jb.177.24.7086-7091.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Denèfle P., Kovarik S., Ciora T., Gosselet N., Bénichou J. C., Latta M., Guinet F., Ryter A., Mayaux J. F. Heterologous protein export in Escherichia coli: influence of bacterial signal peptides on the export of human interleukin 1 beta. Gene. 1989 Dec 28;85(2):499–510. doi: 10.1016/0378-1119(89)90444-7. [DOI] [PubMed] [Google Scholar]
  104. Derman A. I., Prinz W. A., Belin D., Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science. 1993 Dec 10;262(5140):1744–1747. doi: 10.1126/science.8259521. [DOI] [PubMed] [Google Scholar]
  105. Derom C., Gheysen D., Fiers W. High-level synthesis in Escherichia coli of the SV40 small-t antigen under control of the bacteriophage lambda pL promoter. Gene. 1982 Jan;17(1):45–54. doi: 10.1016/0378-1119(82)90099-3. [DOI] [PubMed] [Google Scholar]
  106. Derynck R., Remaut E., Saman E., Stanssens P., De Clercq E., Content J., Fiers W. Expression of human fibroblast interferon gene in Escherichia coli. Nature. 1980 Sep 18;287(5779):193–197. doi: 10.1038/287193a0. [DOI] [PubMed] [Google Scholar]
  107. Deuschle U., Kammerer W., Gentz R., Bujard H. Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J. 1986 Nov;5(11):2987–2994. doi: 10.1002/j.1460-2075.1986.tb04596.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Devlin P. E., Drummond R. J., Toy P., Mark D. F., Watt K. W., Devlin J. J. Alteration of amino-terminal codons of human granulocyte-colony-stimulating factor increases expression levels and allows efficient processing by methionine aminopeptidase in Escherichia coli. Gene. 1988 May 15;65(1):13–22. doi: 10.1016/0378-1119(88)90412-x. [DOI] [PubMed] [Google Scholar]
  109. Doherty A. J., Connolly B. A., Worrall A. F. Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene. 1993 Dec 22;136(1-2):337–340. doi: 10.1016/0378-1119(93)90491-k. [DOI] [PubMed] [Google Scholar]
  110. Donovan W. P., Kushner S. R. Amplification of ribonuclease II (rnb) activity in Escherichia coli K-12. Nucleic Acids Res. 1983 Jan 25;11(2):265–275. doi: 10.1093/nar/11.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Donovan W. P., Kushner S. R. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1986 Jan;83(1):120–124. doi: 10.1073/pnas.83.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Dreyfus M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol. 1988 Nov 5;204(1):79–94. doi: 10.1016/0022-2836(88)90601-8. [DOI] [PubMed] [Google Scholar]
  113. Dubendorff J. W., Studier F. W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol. 1991 May 5;219(1):45–59. doi: 10.1016/0022-2836(91)90856-2. [DOI] [PubMed] [Google Scholar]
  114. Duffaud G. D., March P. E., Inouye M. Expression and secretion of foreign proteins in Escherichia coli. Methods Enzymol. 1987;153:492–507. doi: 10.1016/0076-6879(87)53074-9. [DOI] [PubMed] [Google Scholar]
  115. Duvoisin R. M., Belin D., Krisch H. M. A plasmid expression vector that permits stabilization of both mRNAs and proteins encoded by the cloned genes. Gene. 1986;45(2):193–201. doi: 10.1016/0378-1119(86)90254-4. [DOI] [PubMed] [Google Scholar]
  116. Dykes C. W., Bookless A. B., Coomber B. A., Noble S. A., Humber D. C., Hobden A. N. Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in Escherichia coli. Eur J Biochem. 1988 Jun 1;174(2):411–416. doi: 10.1111/j.1432-1033.1988.tb14113.x. [DOI] [PubMed] [Google Scholar]
  117. Easton A. M., Gierse J. K., Seetharam R., Klein B. K., Kotts C. E. Production of bovine insulin-like growth factor 2 (bIGF2) in Escherichia coli. Gene. 1991 May 30;101(2):291–295. doi: 10.1016/0378-1119(91)90426-c. [DOI] [PubMed] [Google Scholar]
  118. Edalji R., Pilot-Matias T. J., Pratt S. D., Egan D. A., Severin J. M., Gubbins E. G., Petros A. M., Fesik S. W., Burres N. S., Holzman T. F. High-level expression of recombinant human FK-binding protein from a fusion precursor. J Protein Chem. 1992 Jun;11(3):213–223. doi: 10.1007/BF01024859. [DOI] [PubMed] [Google Scholar]
  119. Ehretsmann C. P., Carpousis A. J., Krisch H. M. mRNA degradation in procaryotes. FASEB J. 1992 Oct;6(13):3186–3192. doi: 10.1096/fasebj.6.13.1397840. [DOI] [PubMed] [Google Scholar]
  120. Eliasson M., Olsson A., Palmcrantz E., Wiberg K., Inganäs M., Guss B., Lindberg M., Uhlén M. Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G. J Biol Chem. 1988 Mar 25;263(9):4323–4327. [PubMed] [Google Scholar]
  121. Ellis R. J., Hartl F. U. Protein folding in the cell: competing models of chaperonin function. FASEB J. 1996 Jan;10(1):20–26. doi: 10.1096/fasebj.10.1.8566542. [DOI] [PubMed] [Google Scholar]
  122. Elvin C. M., Thompson P. R., Argall M. E., Hendry P., Stamford N. P., Lilley P. E., Dixon N. E. Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene. 1990 Mar 1;87(1):123–126. doi: 10.1016/0378-1119(90)90503-j. [DOI] [PubMed] [Google Scholar]
  123. Emory S. A., Belasco J. G. The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol. 1990 Aug;172(8):4472–4481. doi: 10.1128/jb.172.8.4472-4481.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Emory S. A., Bouvet P., Belasco J. G. A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 1992 Jan;6(1):135–148. doi: 10.1101/gad.6.1.135. [DOI] [PubMed] [Google Scholar]
  125. Enfors S. O. Control of in vivo proteolysis in the production of recombinant proteins. Trends Biotechnol. 1992 Sep;10(9):310–315. doi: 10.1016/0167-7799(92)90256-u. [DOI] [PubMed] [Google Scholar]
  126. Eyre-Walker A., Bulmer M. Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic Acids Res. 1993 Sep 25;21(19):4599–4603. doi: 10.1093/nar/21.19.4599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Fahey R. C., Hunt J. S., Windham G. C. On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. J Mol Evol. 1977 Nov 25;10(2):155–160. doi: 10.1007/BF01751808. [DOI] [PubMed] [Google Scholar]
  128. Falkenberg C., Björck L., Akerström B. Localization of the binding site for streptococcal protein G on human serum albumin. Identification of a 5.5-kilodalton protein G binding albumin fragment. Biochemistry. 1992 Feb 11;31(5):1451–1457. doi: 10.1021/bi00120a023. [DOI] [PubMed] [Google Scholar]
  129. Faxén M., Plumbridge J., Isaksson L. A. Codon choice and potential complementarity between mRNA downstream of the initiation codon and bases 1471-1480 in 16S ribosomal RNA affects expression of glnS. Nucleic Acids Res. 1991 Oct 11;19(19):5247–5251. doi: 10.1093/nar/19.19.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Figge J., Wright C., Collins C. J., Roberts T. M., Livingston D. M. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell. 1988 Mar 11;52(5):713–722. doi: 10.1016/0092-8674(88)90409-6. [DOI] [PubMed] [Google Scholar]
  131. Firpo M. A., Connelly M. B., Goss D. J., Dahlberg A. E. Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem. 1996 Mar 1;271(9):4693–4698. doi: 10.1074/jbc.271.9.4693. [DOI] [PubMed] [Google Scholar]
  132. Ford C. F., Suominen I., Glatz C. E. Fusion tails for the recovery and purification of recombinant proteins. Protein Expr Purif. 1991 Apr-Jun;2(2-3):95–107. doi: 10.1016/1046-5928(91)90057-p. [DOI] [PubMed] [Google Scholar]
  133. Forsberg G., Baastrup B., Rondahl H., Holmgren E., Pohl G., Hartmanis M., Lake M. An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des(1-3)insulin-like growth factor I. J Protein Chem. 1992 Apr;11(2):201–211. doi: 10.1007/BF01025226. [DOI] [PubMed] [Google Scholar]
  134. Freundlich M., Ramani N., Mathew E., Sirko A., Tsui P. The role of integration host factor in gene expression in Escherichia coli. Mol Microbiol. 1992 Sep;6(18):2557–2563. doi: 10.1111/j.1365-2958.1992.tb01432.x. [DOI] [PubMed] [Google Scholar]
  135. Friedman D. I. Integration host factor: a protein for all reasons. Cell. 1988 Nov 18;55(4):545–554. doi: 10.1016/0092-8674(88)90213-9. [DOI] [PubMed] [Google Scholar]
  136. Friefeld B. R., Korn R., de Jong P. J., Sninsky J. J., Horwitz M. S. The 140-kDa adenovirus DNA polymerase is recognized by antibodies to Escherichia coli-synthesized determinants predicted from an open reading frame on the adenovirus genome. Proc Natl Acad Sci U S A. 1985 May;82(9):2652–2656. doi: 10.1073/pnas.82.9.2652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Frorath B., Abney C. C., Berthold H., Scanarini M., Northemann W. Production of recombinant rat interleukin-6 in Escherichia coli using a novel highly efficient expression vector pGEX-3T. Biotechniques. 1992 Apr;12(4):558–563. [PubMed] [Google Scholar]
  138. Fuchs J. Isolation of an Escherichia coli mutant deficient in thioredoxin reductase. J Bacteriol. 1977 Feb;129(2):967–972. doi: 10.1128/jb.129.2.967-972.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Fuchs P., Breitling F., Dübel S., Seehaus T., Little M. Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Biotechnology (N Y) 1991 Dec;9(12):1369–1372. doi: 10.1038/nbt1291-1369. [DOI] [PubMed] [Google Scholar]
  140. Fuh G., Mulkerrin M. G., Bass S., McFarland N., Brochier M., Bourell J. H., Light D. R., Wells J. A. The human growth hormone receptor. Secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domain. J Biol Chem. 1990 Feb 25;265(6):3111–3115. [PubMed] [Google Scholar]
  141. GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
  142. Gaal T., Barkei J., Dickson R. R., deBoer H. A., deHaseth P. L., Alavi H., Gourse R. L. Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. J Bacteriol. 1989 Sep;171(9):4852–4861. doi: 10.1128/jb.171.9.4852-4861.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Gafny R., Cohen S., Nachaliel N., Glaser G. Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control. J Mol Biol. 1994 Oct 21;243(2):152–156. doi: 10.1006/jmbi.1994.1641. [DOI] [PubMed] [Google Scholar]
  144. Galas D. J., Eggert M., Waterman M. S. Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. J Mol Biol. 1985 Nov 5;186(1):117–128. doi: 10.1016/0022-2836(85)90262-1. [DOI] [PubMed] [Google Scholar]
  145. Garcia G. M., Mar P. K., Mullin D. A., Walker J. R., Prather N. E. The E. coli dnaY gene encodes an arginine transfer RNA. Cell. 1986 May 9;45(3):453–459. doi: 10.1016/0092-8674(86)90331-4. [DOI] [PubMed] [Google Scholar]
  146. Gardella T. J., Rubin D., Abou-Samra A. B., Keutmann H. T., Potts J. T., Jr, Kronenberg H. M., Nussbaum S. R. Expression of human parathyroid hormone-(1-84) in Escherichia coli as a factor X-cleavable fusion protein. J Biol Chem. 1990 Sep 15;265(26):15854–15859. [PubMed] [Google Scholar]
  147. Gates C. M., Stemmer W. P., Kaptein R., Schatz P. J. Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimer". J Mol Biol. 1996 Jan 26;255(3):373–386. doi: 10.1006/jmbi.1996.0031. [DOI] [PubMed] [Google Scholar]
  148. Georgiou G., Poetschke H. L., Stathopoulos C., Francisco J. A. Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol. 1993 Jan;11(1):6–10. doi: 10.1016/0167-7799(93)90068-K. [DOI] [PubMed] [Google Scholar]
  149. Georgiou G., Stephens D. L., Stathopoulos C., Poetschke H. L., Mendenhall J., Earhart C. F. Display of beta-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'-beta-lactamase fusions. Protein Eng. 1996 Feb;9(2):239–247. doi: 10.1093/protein/9.2.239. [DOI] [PubMed] [Google Scholar]
  150. Georgiou G., Valax P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol. 1996 Apr;7(2):190–197. doi: 10.1016/s0958-1669(96)80012-7. [DOI] [PubMed] [Google Scholar]
  151. Germino J., Bastia D. Rapid purification of a cloned gene product by genetic fusion and site-specific proteolysis. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4692–4696. doi: 10.1073/pnas.81.15.4692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Germino J., Gray J. G., Charbonneau H., Vanaman T., Bastia D. Use of gene fusions and protein-protein interaction in the isolation of a biologically active regulatory protein: the replication initiator protein of plasmid R6K. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6848–6852. doi: 10.1073/pnas.80.22.6848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  154. Gheysen D., Iserentant D., Derom C., Fiers W. Systematic alteration of the nucleotide sequence preceding the translation initiation codon and the effects on bacterial expression of the cloned SV40 small-t antigen gene. Gene. 1982 Jan;17(1):55–63. doi: 10.1016/0378-1119(82)90100-7. [DOI] [PubMed] [Google Scholar]
  155. Ghrayeb J., Kimura H., Takahara M., Hsiung H., Masui Y., Inouye M. Secretion cloning vectors in Escherichia coli. EMBO J. 1984 Oct;3(10):2437–2442. doi: 10.1002/j.1460-2075.1984.tb02151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Giacomini A., Ollero F. J., Squartini A., Nuti M. P. Construction of multipurpose gene cartridges based on a novel synthetic promoter for high-level gene expression in gram-negative bacteria. Gene. 1994 Jun 24;144(1):17–24. doi: 10.1016/0378-1119(94)90197-x. [DOI] [PubMed] [Google Scholar]
  157. Giladi H., Goldenberg D., Koby S., Oppenheim A. B. Enhanced activity of the bacteriophage lambda PL promoter at low temperature. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2184–2188. doi: 10.1073/pnas.92.6.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Giladi H., Koby S., Gottesman M. E., Oppenheim A. B. Supercoiling, integration host factor, and a dual promoter system, participate in the control of the bacteriophage lambda pL promoter. J Mol Biol. 1992 Apr 20;224(4):937–948. doi: 10.1016/0022-2836(92)90461-r. [DOI] [PubMed] [Google Scholar]
  159. Gilbert H. F. Protein chaperones and protein folding. Curr Opin Biotechnol. 1994 Oct;5(5):534–539. doi: 10.1016/0958-1669(94)90070-1. [DOI] [PubMed] [Google Scholar]
  160. Giordano T. J., Deuschle U., Bujard H., McAllister W. T. Regulation of coliphage T3 and T7 RNA polymerases by the lac repressor-operator system. Gene. 1989 Dec 14;84(2):209–219. doi: 10.1016/0378-1119(89)90494-0. [DOI] [PubMed] [Google Scholar]
  161. Goeddel D. V., Kleid D. G., Bolivar F., Heyneker H. L., Yansura D. G., Crea R., Hirose T., Kraszewski A., Itakura K., Riggs A. D. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A. 1979 Jan;76(1):106–110. doi: 10.1073/pnas.76.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Goeddel D. V. Systems for heterologous gene expression. Methods Enzymol. 1990;185:3–7. doi: 10.1016/0076-6879(90)85003-7. [DOI] [PubMed] [Google Scholar]
  163. Goff S. A., Casson L. P., Goldberg A. L. Heat shock regulatory gene htpR influences rates of protein degradation and expression of the lon gene in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6647–6651. doi: 10.1073/pnas.81.21.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Goff S. A., Goldberg A. L. An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. J Biol Chem. 1987 Apr 5;262(10):4508–4515. [PubMed] [Google Scholar]
  165. Goff S. A., Goldberg A. L. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell. 1985 Jun;41(2):587–595. doi: 10.1016/s0092-8674(85)80031-3. [DOI] [PubMed] [Google Scholar]
  166. Gold L. Expression of heterologous proteins in Escherichia coli. Methods Enzymol. 1990;185:11–14. doi: 10.1016/0076-6879(90)85004-8. [DOI] [PubMed] [Google Scholar]
  167. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  168. Gold L., Stormo G. D. High-level translation initiation. Methods Enzymol. 1990;185:89–93. doi: 10.1016/0076-6879(90)85009-d. [DOI] [PubMed] [Google Scholar]
  169. Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
  170. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  171. Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  172. Goldman E., Rosenberg A. H., Zubay G., Studier F. W. Consecutive low-usage leucine codons block translation only when near the 5' end of a message in Escherichia coli. J Mol Biol. 1995 Feb 3;245(5):467–473. doi: 10.1006/jmbi.1994.0038. [DOI] [PubMed] [Google Scholar]
  173. Goldstein J., Lehnhardt S., Inouye M. Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide. J Bacteriol. 1990 Mar;172(3):1225–1231. doi: 10.1128/jb.172.3.1225-1231.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Goldstein J., Pollitt N. S., Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jan;87(1):283–287. doi: 10.1073/pnas.87.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Goldstein M. A., Doi R. H. Prokaryotic promoters in biotechnology. Biotechnol Annu Rev. 1995;1:105–128. doi: 10.1016/s1387-2656(08)70049-8. [DOI] [PubMed] [Google Scholar]
  176. Goloubinoff P., Gatenby A. A., Lorimer G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature. 1989 Jan 5;337(6202):44–47. doi: 10.1038/337044a0. [DOI] [PubMed] [Google Scholar]
  177. Gonda D. K., Bachmair A., Wünning I., Tobias J. W., Lane W. S., Varshavsky A. Universality and structure of the N-end rule. J Biol Chem. 1989 Oct 5;264(28):16700–16712. [PubMed] [Google Scholar]
  178. Gorski K., Roch J. M., Prentki P., Krisch H. M. The stability of bacteriophage T4 gene 32 mRNA: a 5' leader sequence that can stabilize mRNA transcripts. Cell. 1985 Dec;43(2 Pt 1):461–469. doi: 10.1016/0092-8674(85)90176-x. [DOI] [PubMed] [Google Scholar]
  179. Gottesman S., Maurizi M. R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev. 1992 Dec;56(4):592–621. doi: 10.1128/mr.56.4.592-621.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Gottesman S. Minimizing proteolysis in Escherichia coli: genetic solutions. Methods Enzymol. 1990;185:119–129. doi: 10.1016/0076-6879(90)85013-e. [DOI] [PubMed] [Google Scholar]
  181. Gourse R. L., de Boer H. A., Nomura M. DNA determinants of rRNA synthesis in E. coli: growth rate dependent regulation, feedback inhibition, upstream activation, antitermination. Cell. 1986 Jan 17;44(1):197–205. doi: 10.1016/0092-8674(86)90498-8. [DOI] [PubMed] [Google Scholar]
  182. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Gram H., Ramage P., Memmert K., Gamse R., Kocher H. P. A novel approach for high level production of a recombinant human parathyroid hormone fragment in Escherichia coli. Biotechnology (N Y) 1994 Oct;12(10):1017–1023. doi: 10.1038/nbt1094-1017. [DOI] [PubMed] [Google Scholar]
  184. Grauschopf U., Winther J. R., Korber P., Zander T., Dallinger P., Bardwell J. C. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947–955. doi: 10.1016/0092-8674(95)90210-4. [DOI] [PubMed] [Google Scholar]
  185. Gray G. L., Baldridge J. S., McKeown K. S., Heyneker H. L., Chang C. N. Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable. Gene. 1985;39(2-3):247–254. doi: 10.1016/0378-1119(85)90319-1. [DOI] [PubMed] [Google Scholar]
  186. Gren E. J. Recognition of messenger RNA during translational initiation in Escherichia coli. Biochimie. 1984 Jan;66(1):1–29. doi: 10.1016/0300-9084(84)90188-3. [DOI] [PubMed] [Google Scholar]
  187. Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5848–5852. doi: 10.1073/pnas.91.13.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Grisshammer R., Duckworth R., Henderson R. Expression of a rat neurotensin receptor in Escherichia coli. Biochem J. 1993 Oct 15;295(Pt 2):571–576. doi: 10.1042/bj2950571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Gronenborn B. Overproduction of phage lambda repressor under control of the lac promotor of Escherichia coli. Mol Gen Genet. 1976 Nov 17;148(3):243–250. doi: 10.1007/BF00332898. [DOI] [PubMed] [Google Scholar]
  190. Gross G., Mielke C., Hollatz I., Blöcker H., Frank R. RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-beta genes in Escherichia coli. J Biol Chem. 1990 Oct 15;265(29):17627–17636. [PubMed] [Google Scholar]
  191. Gualerzi C. O., Pon C. L. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. doi: 10.1021/bi00477a001. [DOI] [PubMed] [Google Scholar]
  192. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  193. Guan X., Wurtele E. S. Reduction of growth and acetyl-CoA carboxylase activity by expression of a chimeric streptavidin gene in Escherichia coli. Appl Microbiol Biotechnol. 1996 Feb;44(6):753–758. doi: 10.1007/BF00178614. [DOI] [PubMed] [Google Scholar]
  194. Guarneros G., Montañez C., Hernandez T., Court D. Posttranscriptional control of bacteriophage lambda gene expression from a site distal to the gene. Proc Natl Acad Sci U S A. 1982 Jan;79(2):238–242. doi: 10.1073/pnas.79.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Guilhot C., Jander G., Martin N. L., Beckwith J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9895–9899. doi: 10.1073/pnas.92.21.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Gutman G. A., Hatfield G. W. Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A. 1989 May;86(10):3699–3703. doi: 10.1073/pnas.86.10.3699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Hall M. N., Gabay J., Débarbouillé M., Schwartz M. A role for mRNA secondary structure in the control of translation initiation. Nature. 1982 Feb 18;295(5850):616–618. doi: 10.1038/295616a0. [DOI] [PubMed] [Google Scholar]
  198. Hammarberg B., Nygren P. A., Holmgren E., Elmblad A., Tally M., Hellman U., Moks T., Uhlén M. Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4367–4371. doi: 10.1073/pnas.86.12.4367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Hansson M., Ståhl S., Hjorth R., Uhlén M., Moks T. Single-step recovery of a secreted recombinant protein by expanded bed adsorption. Biotechnology (N Y) 1994 Mar;12(3):285–288. doi: 10.1038/nbt0394-285. [DOI] [PubMed] [Google Scholar]
  200. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Hartz D., McPheeters D. S., Gold L. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol. 1991 Mar 5;218(1):83–97. doi: 10.1016/0022-2836(91)90875-7. [DOI] [PubMed] [Google Scholar]
  202. Hasan N., Szybalski W. Construction of lacIts and lacIqts expression plasmids and evaluation of the thermosensitive lac repressor. Gene. 1995 Sep 22;163(1):35–40. doi: 10.1016/0378-1119(95)00409-y. [DOI] [PubMed] [Google Scholar]
  203. Hasan N., Szybalski W. Control of cloned gene expression by promoter inversion in vivo: construction of improved vectors with a multiple cloning site and the Ptac promoter. Gene. 1987;56(1):145–151. doi: 10.1016/0378-1119(87)90167-3. [DOI] [PubMed] [Google Scholar]
  204. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Hayashi M. N., Hayashi M. Cloned DNA sequences that determine mRNA stability of bacteriophage phi X174 in vivo are functional. Nucleic Acids Res. 1985 Aug 26;13(16):5937–5948. doi: 10.1093/nar/13.16.5937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Hayes S. A., Dice J. F. Roles of molecular chaperones in protein degradation. J Cell Biol. 1996 Feb;132(3):255–258. doi: 10.1083/jcb.132.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. He B., McAllister W. T., Durbin R. K. Phage RNA polymerase vectors that allow efficient gene expression in both prokaryotic and eukaryotic cells. Gene. 1995 Oct 16;164(1):75–79. doi: 10.1016/0378-1119(95)00475-l. [DOI] [PubMed] [Google Scholar]
  208. Hedgpeth J., Ballivet M., Eisen H. Lambda phage promoter used to enhance expression of a plasmid-cloned gene. Mol Gen Genet. 1978 Jul 11;163(2):197–203. doi: 10.1007/BF00267410. [DOI] [PubMed] [Google Scholar]
  209. Heim R., Tsien R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996 Feb 1;6(2):178–182. doi: 10.1016/s0960-9822(02)00450-5. [DOI] [PubMed] [Google Scholar]
  210. Helke A., Geisen R. M., Vollmer M., Sprengart M. L., Fuchs E. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site. Nucleic Acids Res. 1993 Dec 11;21(24):5705–5711. doi: 10.1093/nar/21.24.5705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Hellman J., Mäntsälä P. Construction of an Escherichia coli export-affinity vector for expression and purification of foreign proteins by fusion to cyclomaltodextrin glucanotransferase. J Biotechnol. 1992 Mar;23(1):19–34. doi: 10.1016/0168-1656(92)90097-s. [DOI] [PubMed] [Google Scholar]
  212. Hendrick J. P., Hartl F. U. The role of molecular chaperones in protein folding. FASEB J. 1995 Dec;9(15):1559–1569. doi: 10.1096/fasebj.9.15.8529835. [DOI] [PubMed] [Google Scholar]
  213. Herbst B., Kneip S., Bremer E. pOSEX: vectors for osmotically controlled and finely tuned gene expression in Escherichia coli. Gene. 1994 Dec 30;151(1-2):137–142. doi: 10.1016/0378-1119(94)90644-0. [DOI] [PubMed] [Google Scholar]
  214. Hernan R. A., Hui H. L., Andracki M. E., Noble R. W., Sligar S. G., Walder J. A., Walder R. Y. Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry. 1992 Sep 15;31(36):8619–8628. doi: 10.1021/bi00151a032. [DOI] [PubMed] [Google Scholar]
  215. Hirel P. H., Schmitter M. J., Dessen P., Fayat G., Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247–8251. doi: 10.1073/pnas.86.21.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Hochuli E., Döbeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr. 1987 Dec 18;411:177–184. doi: 10.1016/s0021-9673(00)93969-4. [DOI] [PubMed] [Google Scholar]
  217. Hockney R. C. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 1994 Nov;12(11):456–463. doi: 10.1016/0167-7799(94)90021-3. [DOI] [PubMed] [Google Scholar]
  218. Hodgson J. Expression systems: a user's guide. Emphasis has shifted from the vector construct to the host organism. Biotechnology (N Y) 1993 Aug;11(8):887–893. doi: 10.1038/nbt0893-887. [DOI] [PubMed] [Google Scholar]
  219. Hoffman C. S., Wright A. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5107–5111. doi: 10.1073/pnas.82.15.5107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Holland I. B., Kenny B., Steipe B., Plückthun A. Secretion of heterologous proteins in Escherichia coli. Methods Enzymol. 1990;182:132–143. doi: 10.1016/0076-6879(90)82013-r. [DOI] [PubMed] [Google Scholar]
  221. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  222. Horii T., Ogawa T., Ogawa H. Organization of the recA gene of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):313–317. doi: 10.1073/pnas.77.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Hsiung H. M., MacKellar W. C. Expression of bovine growth hormone derivatives in Escherichia coli and the use of the derivatives to produce natural sequence growth hormone by cathepsin C cleavage. Methods Enzymol. 1987;153:390–401. doi: 10.1016/0076-6879(87)53067-1. [DOI] [PubMed] [Google Scholar]
  224. Hsu L. M., Giannini J. K., Leung T. W., Crosthwaite J. C. Upstream sequence activation of Escherichia coli argT promoter in vivo and in vitro. Biochemistry. 1991 Jan 22;30(3):813–822. doi: 10.1021/bi00217a035. [DOI] [PubMed] [Google Scholar]
  225. Hui A., Hayflick J., Dinkelspiel K., de Boer H. A. Mutagenesis of the three bases preceding the start codon of the beta-galactosidase mRNA and its effect on translation in Escherichia coli. EMBO J. 1984 Mar;3(3):623–629. doi: 10.1002/j.1460-2075.1984.tb01858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Hummel M., Herbst H., Stein H. Gene synthesis, expression in Escherichia coli and purification of immunoreactive human insulin-like growth factors I and II. Application of a modified HPLC separation technique for hydrophobic proteins. Eur J Biochem. 1989 Apr 1;180(3):555–561. doi: 10.1111/j.1432-1033.1989.tb14681.x. [DOI] [PubMed] [Google Scholar]
  227. Humphreys D. P., Weir N., Mountain A., Lund P. A. Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J Biol Chem. 1995 Nov 24;270(47):28210–28215. doi: 10.1074/jbc.270.47.28210. [DOI] [PubMed] [Google Scholar]
  228. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  229. Høgset A., Blingsmo O. R., Saether O., Gautvik V. T., Holmgren E., Hartmanis M., Josephson S., Gabrielsen O. S., Gordeladze J. O., Alestrøm P. Expression and characterization of a recombinant human parathyroid hormone secreted by Escherichia coli employing the staphylococcal protein A promoter and signal sequence. J Biol Chem. 1990 May 5;265(13):7338–7344. [PubMed] [Google Scholar]
  230. Hüttenhofer A., Noller H. F. Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 1994 Aug 15;13(16):3892–3901. doi: 10.1002/j.1460-2075.1994.tb06700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Ikehara M., Ohtsuka E., Tokunaga T., Nishikawa S., Uesugi S., Tanaka T., Aoyama Y., Kikyodani S., Fujimoto K., Yanase K. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4695–4699. doi: 10.1073/pnas.83.13.4695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  233. Ingram L. O., Conway T., Clark D. P., Sewell G. W., Preston J. F. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987 Oct;53(10):2420–2425. doi: 10.1128/aem.53.10.2420-2425.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Inouye H., Michaelis S., Wright A., Beckwith J. Cloning and restriction mapping of the alkaline phosphatase structural gene (phoA) of Escherichia coli and generation of deletion mutants in vitro. J Bacteriol. 1981 May;146(2):668–675. doi: 10.1128/jb.146.2.668-675.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Inouye S., Inouye M. Up-promoter mutations in the lpp gene of Escherichia coli. Nucleic Acids Res. 1985 May 10;13(9):3101–3110. doi: 10.1093/nar/13.9.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Irwin B., Heck J. D., Hatfield G. W. Codon pair utilization biases influence translational elongation step times. J Biol Chem. 1995 Sep 29;270(39):22801–22806. doi: 10.1074/jbc.270.39.22801. [DOI] [PubMed] [Google Scholar]
  237. Iserentant D., Fiers W. Secondary structure of mRNA and efficiency of translation initiation. Gene. 1980 Apr;9(1-2):1–12. doi: 10.1016/0378-1119(80)90163-8. [DOI] [PubMed] [Google Scholar]
  238. Itakura K., Hirose T., Crea R., Riggs A. D., Heyneker H. L., Bolivar F., Boyer H. W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science. 1977 Dec 9;198(4321):1056–1063. doi: 10.1126/science.412251. [DOI] [PubMed] [Google Scholar]
  239. Ito K., Kawakami K., Nakamura Y. Multiple control of Escherichia coli lysyl-tRNA synthetase expression involves a transcriptional repressor and a translational enhancer element. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):302–306. doi: 10.1073/pnas.90.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Ivanov I., Alexandrova R., Dragulev B., Saraffova A., AbouHaidar M. G. Effect of tandemly repeated AGG triplets on the translation of CAT-mRNA in E. coli. FEBS Lett. 1992 Jul 28;307(2):173–176. doi: 10.1016/0014-5793(92)80761-5. [DOI] [PubMed] [Google Scholar]
  241. Iwakura M., Obara K., Kokubu T., Ohashi S., Izutsu H. Expression and purification of growth hormone-releasing factor with the aid of dihydrofolate reductase handle. J Biochem. 1992 Jul;112(1):57–62. doi: 10.1093/oxfordjournals.jbchem.a123865. [DOI] [PubMed] [Google Scholar]
  242. Izard J., Parker M. W., Chartier M., Duché D., Baty D. A single amino acid substitution can restore the solubility of aggregated colicin A mutants in Escherichia coli. Protein Eng. 1994 Dec;7(12):1495–1500. doi: 10.1093/protein/7.12.1495. [DOI] [PubMed] [Google Scholar]
  243. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  244. Jacques N., Guillerez J., Dreyfus M. Culture conditions differentially affect the translation of individual Escherichia coli mRNAs. J Mol Biol. 1992 Aug 5;226(3):597–608. doi: 10.1016/0022-2836(92)90618-t. [DOI] [PubMed] [Google Scholar]
  245. Johnson D. L., Middleton S. A., McMahon F., Barbone F. P., Kroon D., Tsao E., Lee W. H., Mulcahy L. S., Jolliffe L. K. Refolding, purification, and characterization of human erythropoietin binding protein produced in Escherichia coli. Protein Expr Purif. 1996 Feb;7(1):104–113. doi: 10.1006/prep.1996.0014. [DOI] [PubMed] [Google Scholar]
  246. Johnson E. S., Gonda D. K., Varshavsky A. cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature. 1990 Jul 19;346(6281):287–291. doi: 10.1038/346287a0. [DOI] [PubMed] [Google Scholar]
  247. Jones P. G., Krah R., Tafuri S. R., Wolffe A. P. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol. 1992 Sep;174(18):5798–5802. doi: 10.1128/jb.174.18.5798-5802.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Josaitis C. A., Gaal T., Gourse R. L. Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1117–1121. doi: 10.1073/pnas.92.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Josaitis C. A., Gaal T., Ross W., Gourse R. L. Sequences upstream of the-35 hexamer of rrnB P1 affect promoter strength and upstream activation. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):307–311. doi: 10.1016/0167-4781(90)90186-6. [DOI] [PubMed] [Google Scholar]
  250. Kadonaga J. T., Gautier A. E., Straus D. R., Charles A. D., Edge M. D., Knowles J. R. The role of the beta-lactamase signal sequence in the secretion of proteins by Escherichia coli. J Biol Chem. 1984 Feb 25;259(4):2149–2154. [PubMed] [Google Scholar]
  251. Kane J. F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):494–500. doi: 10.1016/0958-1669(95)80082-4. [DOI] [PubMed] [Google Scholar]
  252. Kato C., Kobayashi T., Kudo T., Furusato T., Murakami Y., Tanaka T., Baba H., Oishi T., Ohtsuka E., Ikehara M. Construction of an excretion vector and extracellular production of human growth hormone from Escherichia coli. Gene. 1987;54(2-3):197–202. doi: 10.1016/0378-1119(87)90487-2. [DOI] [PubMed] [Google Scholar]
  253. Kaufmann A., Stierhof Y. D., Henning U. New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol. 1994 Jan;176(2):359–367. doi: 10.1128/jb.176.2.359-367.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Kavanaugh J. S., Rogers P. H., Arnone A. High-resolution X-ray study of deoxy recombinant human hemoglobins synthesized from beta-globins having mutated amino termini. Biochemistry. 1992 Sep 15;31(36):8640–8647. doi: 10.1021/bi00151a034. [DOI] [PubMed] [Google Scholar]
  255. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  256. Kelman Z., Yao N., O'Donnell M. Escherichia coli expression vectors containing a protein kinase recognition motif, His6-tag and hemagglutinin epitope. Gene. 1995 Dec 1;166(1):177–178. doi: 10.1016/0378-1119(95)00556-7. [DOI] [PubMed] [Google Scholar]
  257. Kendall R. L., Yamada R., Bradshaw R. A. Cotranslational amino-terminal processing. Methods Enzymol. 1990;185:398–407. doi: 10.1016/0076-6879(90)85035-m. [DOI] [PubMed] [Google Scholar]
  258. Kern I., Cegłowski P. Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. Gene. 1995 Sep 22;163(1):53–57. doi: 10.1016/0378-1119(95)00395-m. [DOI] [PubMed] [Google Scholar]
  259. Khosla C., Bailey J. E. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol. 1989 Nov;171(11):5995–6004. doi: 10.1128/jb.171.11.5995-6004.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Khosla C., Curtis J. E., Bydalek P., Swartz J. R., Bailey J. E. Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter. Biotechnology (N Y) 1990 Jun;8(6):554–558. doi: 10.1038/nbt0690-554. [DOI] [PubMed] [Google Scholar]
  261. Kikuchi Y., Yoda K., Yamasaki M., Tamura G. The nucleotide sequence of the promoter and the amino-terminal region of alkaline phosphatase structural gene (phoA) of Escherichia coli. Nucleic Acids Res. 1981 Nov 11;9(21):5671–5678. doi: 10.1093/nar/9.21.5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Kim J. S., Raines R. T. Peptide tags for a dual affinity fusion system. Anal Biochem. 1994 May 15;219(1):165–166. doi: 10.1006/abio.1994.1251. [DOI] [PubMed] [Google Scholar]
  263. Kim J. S., Raines R. T. Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci. 1993 Mar;2(3):348–356. doi: 10.1002/pro.5560020307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Kleerebezem M., Tommassen J. Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol Microbiol. 1993 Mar;7(6):947–956. doi: 10.1111/j.1365-2958.1993.tb01186.x. [DOI] [PubMed] [Google Scholar]
  265. Knappik A., Krebber C., Plückthun A. The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology (N Y) 1993 Jan;11(1):77–83. doi: 10.1038/nbt0193-77. [DOI] [PubMed] [Google Scholar]
  266. Knappik A., Plückthun A. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques. 1994 Oct;17(4):754–761. [PubMed] [Google Scholar]
  267. Knappik A., Plückthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 1995 Jan;8(1):81–89. doi: 10.1093/protein/8.1.81. [DOI] [PubMed] [Google Scholar]
  268. Knott J. A., Sullivan C. A., Weston A. The isolation and characterisation of human atrial natriuretic factor produced as a fusion protein in Escherichia coli. Eur J Biochem. 1988 Jun 1;174(2):405–410. doi: 10.1111/j.1432-1033.1988.tb14112.x. [DOI] [PubMed] [Google Scholar]
  269. Kobayashi M., Nagata K., Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase: effect of base substitutions in the promoter -35 region on promoter strength. Nucleic Acids Res. 1990 Dec 25;18(24):7367–7372. doi: 10.1093/nar/18.24.7367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Koken M. H., Odijk H. H., van Duin M., Fornerod M., Hoeijmakers J. H. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: overproduction of the human DNA repair protein, ERCC1, as a ubiquitin fusion protein in Escherichia coli. Biochem Biophys Res Commun. 1993 Sep 15;195(2):643–653. doi: 10.1006/bbrc.1993.2094. [DOI] [PubMed] [Google Scholar]
  271. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Kwon S., Kim S., Kim E. Effects of glycerol of beta-lactamase production during high cell density cultivation of recombinant Escherichia coli. Biotechnol Prog. 1996 Mar-Apr;12(2):205–208. doi: 10.1021/bp9500728. [DOI] [PubMed] [Google Scholar]
  273. Köhler K., Ljungquist C., Kondo A., Veide A., Nilsson B. Engineering proteins to enhance their partition coefficients in aqueous two-phase systems. Biotechnology (N Y) 1991 Jul;9(7):642–646. doi: 10.1038/nbt0791-642. [DOI] [PubMed] [Google Scholar]
  274. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
  275. LaVallie E. R., McCoy J. M. Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):501–506. doi: 10.1016/0958-1669(95)80083-2. [DOI] [PubMed] [Google Scholar]
  276. Lange R., Hengge-Aronis R. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 1994 Jul 1;8(13):1600–1612. doi: 10.1101/gad.8.13.1600. [DOI] [PubMed] [Google Scholar]
  277. Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
  278. Lanzer M., Bujard H. Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8973–8977. doi: 10.1073/pnas.85.23.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Le Calvez H., Green J. M., Baty D. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene. 1996 Apr 17;170(1):51–55. doi: 10.1016/0378-1119(95)00850-0. [DOI] [PubMed] [Google Scholar]
  280. Lee C., Li P., Inouye H., Brickman E. R., Beckwith J. Genetic studies on the inability of beta-galactosidase to be translocated across the Escherichia coli cytoplasmic membrane. J Bacteriol. 1989 Sep;171(9):4609–4616. doi: 10.1128/jb.171.9.4609-4616.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Lee N., Zhang S. Q., Cozzitorto J., Yang J. S., Testa D. Modification of mRNA secondary structure and alteration of the expression of human interferon alpha 1 in Escherichia coli. Gene. 1987;58(1):77–86. doi: 10.1016/0378-1119(87)90031-x. [DOI] [PubMed] [Google Scholar]
  282. Lee S. C., Olins P. O. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J Biol Chem. 1992 Feb 15;267(5):2849–2852. [PubMed] [Google Scholar]
  283. Lee S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 1996 Mar;14(3):98–105. doi: 10.1016/0167-7799(96)80930-9. [DOI] [PubMed] [Google Scholar]
  284. Lehnhardt S., Pollitt S., Inouye M. The differential effect on two hybrid proteins of deletion mutations within the hydrophobic region of the Escherichia coli OmpA signal peptide. J Biol Chem. 1987 Feb 5;262(4):1716–1719. [PubMed] [Google Scholar]
  285. Lei S. P., Lin H. C., Wang S. S., Callaway J., Wilcox G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol. 1987 Sep;169(9):4379–4383. doi: 10.1128/jb.169.9.4379-4383.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Li S. C., Squires C. L., Squires C. Antitermination of E. coli rRNA transcription is caused by a control region segment containing lambda nut-like sequences. Cell. 1984 Oct;38(3):851–860. doi: 10.1016/0092-8674(84)90280-0. [DOI] [PubMed] [Google Scholar]
  287. Liang S. M., Allet B., Rose K., Hirschi M., Liang C. M., Thatcher D. R. Characterization of human interleukin 2 derived from Escherichia coli. Biochem J. 1985 Jul 15;229(2):429–439. doi: 10.1042/bj2290429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Lindsey D. F., Mullin D. A., Walker J. R. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J Bacteriol. 1989 Nov;171(11):6197–6205. doi: 10.1128/jb.171.11.6197-6205.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Lisser S., Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 1993 Apr 11;21(7):1507–1516. doi: 10.1093/nar/21.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Little M., Fuchs P., Breitling F., Dübel S. Bacterial surface presentation of proteins and peptides: an alternative to phage technology? Trends Biotechnol. 1993 Jan;11(1):3–5. doi: 10.1016/0167-7799(93)90067-J. [DOI] [PubMed] [Google Scholar]
  291. Little S., Campbell C. J., Evans I. J., Hayward E. C., Lilley R. J., Robinson M. K. A short N-proximal region of prochymosin inhibits the secretion of hybrid proteins from Escherichia coli. Gene. 1989 Nov 30;83(2):321–329. doi: 10.1016/0378-1119(89)90118-2. [DOI] [PubMed] [Google Scholar]
  292. Ljungquist C., Lundeberg J., Rasmussen A. M., Hornes E., Uhlen M. Immobilization and recovery of fusion proteins and B-lymphocyte cells using magnetic separation. DNA Cell Biol. 1993 Mar;12(2):191–197. doi: 10.1089/dna.1993.12.191. [DOI] [PubMed] [Google Scholar]
  293. Lo A. C., MacKay R. M., Seligy V. L., Willick G. E. Bacillus subtilis beta-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Appl Environ Microbiol. 1988 Sep;54(9):2287–2292. doi: 10.1128/aem.54.9.2287-2292.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Lorimer G. H. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 1996 Jan;10(1):5–9. doi: 10.1096/fasebj.10.1.8566548. [DOI] [PubMed] [Google Scholar]
  295. Lu Z., DiBlasio-Smith E. A., Grant K. L., Warne N. W., LaVallie E. R., Collins-Racie L. A., Follettie M. T., Williamson M. J., McCoy J. M. Histidine patch thioredoxins. Mutant forms of thioredoxin with metal chelating affinity that provide for convenient purifications of thioredoxin fusion proteins. J Biol Chem. 1996 Mar 1;271(9):5059–5065. [PubMed] [Google Scholar]
  296. Lu Z., Murray K. S., Van Cleave V., LaVallie E. R., Stahl M. L., McCoy J. M. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 1995 Apr;13(4):366–372. doi: 10.1038/nbt0495-366. [DOI] [PubMed] [Google Scholar]
  297. Luli G. W., Strohl W. R. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol. 1990 Apr;56(4):1004–1011. doi: 10.1128/aem.56.4.1004-1011.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Lundeberg J., Wahlberg J., Uhlén M. Affinity purification of specific DNA fragments using a lac repressor fusion protein. Genet Anal Tech Appl. 1990 May;7(3):47–52. doi: 10.1016/0735-0651(90)90040-m. [DOI] [PubMed] [Google Scholar]
  299. Löfdahl S., Guss B., Uhlén M., Philipson L., Lindberg M. Gene for staphylococcal protein A. Proc Natl Acad Sci U S A. 1983 Feb;80(3):697–701. doi: 10.1073/pnas.80.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. MacFerrin K. D., Chen L., Terranova M. P., Schreiber S. L., Verdine G. L. Overproduction of proteins using expression-cassette polymerase chain reaction. Methods Enzymol. 1993;217:79–102. doi: 10.1016/0076-6879(93)17057-c. [DOI] [PubMed] [Google Scholar]
  301. MacIntyre S., Henning U. The role of the mature part of secretory proteins in translocation across the plasma membrane and in regulation of their synthesis in Escherichia coli. Biochimie. 1990 Feb-Mar;72(2-3):157–167. doi: 10.1016/0300-9084(90)90141-3. [DOI] [PubMed] [Google Scholar]
  302. Mackman N., Baker K., Gray L., Haigh R., Nicaud J. M., Holland I. B. Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J. 1987 Sep;6(9):2835–2841. doi: 10.1002/j.1460-2075.1987.tb02580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Maina C. V., Riggs P. D., Grandea A. G., 3rd, Slatko B. E., Moran L. S., Tagliamonte J. A., McReynolds L. A., Guan C. D. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene. 1988 Dec 30;74(2):365–373. doi: 10.1016/0378-1119(88)90170-9. [DOI] [PubMed] [Google Scholar]
  304. Makoff A. J., Smallwood A. E. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucleic Acids Res. 1990 Apr 11;18(7):1711–1718. doi: 10.1093/nar/18.7.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Makrides S. C., Nygren P. A., Andrews B., Ford P. J., Evans K. S., Hayman E. G., Adari H., Uhlén M., Toth C. A. Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor. J Pharmacol Exp Ther. 1996 Apr;277(1):534–542. [PubMed] [Google Scholar]
  306. Malke H., Ferretti J. J. Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3557–3561. doi: 10.1073/pnas.81.11.3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Marston F. A. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986 Nov 15;240(1):1–12. doi: 10.1042/bj2400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Martin J., Hartl F. U. Molecular chaperones in cellular protein folding. Bioessays. 1994 Sep;16(9):689–692. doi: 10.1002/bies.950160916. [DOI] [PubMed] [Google Scholar]
  309. Masuda K., Kamimura T., Kanesaki M., Ishii K., Imaizumi A., Sugiyama T., Suzuki Y., Ohtsuka E. Efficient production of the C-terminal domain of secretory leukoprotease inhibitor as a thrombin-cleavable fusion protein in Escherichia coli. Protein Eng. 1996 Jan;9(1):101–106. doi: 10.1093/protein/9.1.101. [DOI] [PubMed] [Google Scholar]
  310. Matin A. Starvation promoters of Escherichia coli. Their function, regulation, and use in bioprocessing and bioremediation. Ann N Y Acad Sci. 1994 May 2;721:277–291. doi: 10.1111/j.1749-6632.1994.tb47401.x. [DOI] [PubMed] [Google Scholar]
  311. Maurizi M. R. Proteases and protein degradation in Escherichia coli. Experientia. 1992 Feb 15;48(2):178–201. doi: 10.1007/BF01923511. [DOI] [PubMed] [Google Scholar]
  312. McCarthy J. E., Brimacombe R. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 1994 Nov;10(11):402–407. doi: 10.1016/0168-9525(94)90057-4. [DOI] [PubMed] [Google Scholar]
  313. McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
  314. McCarthy J. E., Schairer H. U., Sebald W. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation. EMBO J. 1985 Feb;4(2):519–526. doi: 10.1002/j.1460-2075.1985.tb03659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. McCarthy J. E., Sebald W., Gross G., Lammers R. Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: its fusion with two human genes. Gene. 1986;41(2-3):201–206. doi: 10.1016/0378-1119(86)90099-5. [DOI] [PubMed] [Google Scholar]
  316. Meerman H. J., Georgiou G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology (N Y) 1994 Nov;12(11):1107–1110. doi: 10.1038/nbt1194-1107. [DOI] [PubMed] [Google Scholar]
  317. Meerman H. J., Georgiou G. High-level production of proteolytically sensitive secreted proteins in Escherichia coli strains impaired in the heat-shock response. Ann N Y Acad Sci. 1994 May 2;721:292–302. doi: 10.1111/j.1749-6632.1994.tb47402.x. [DOI] [PubMed] [Google Scholar]
  318. Mertens N., Remaut E., Fiers W. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Biotechnology (N Y) 1995 Feb;13(2):175–179. doi: 10.1038/nbt0295-175. [DOI] [PubMed] [Google Scholar]
  319. Mertens N., Remaut E., Fiers W. Versatile, multi-featured plasmids for high-level expression of heterologous genes in Escherichia coli: overproduction of human and murine cytokines. Gene. 1995 Oct 16;164(1):9–15. doi: 10.1016/0378-1119(95)00505-z. [DOI] [PubMed] [Google Scholar]
  320. Michaelis S., Beckwith J. Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu Rev Microbiol. 1982;36:435–465. doi: 10.1146/annurev.mi.36.100182.002251. [DOI] [PubMed] [Google Scholar]
  321. Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5798–5802. doi: 10.1073/pnas.91.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Minas W., Bailey J. E. Co-overexpression of prlF increases cell viability and enzyme yields in recombinant Escherichia coli expressing Bacillus stearothermophilus alpha-amylase. Biotechnol Prog. 1995 Jul-Aug;11(4):403–411. doi: 10.1021/bp00034a007. [DOI] [PubMed] [Google Scholar]
  323. Miyake T., Oka T., Nishizawa T., Misoka F., Fuwa T., Yoda K., Yamasaki M., Tamura G. Secretion of human interferon-alpha induced by using secretion vectors containing a promoter and signal sequence of alkaline phosphatase gene of Escherichia coli. J Biochem. 1985 May;97(5):1429–1436. doi: 10.1093/oxfordjournals.jbchem.a135197. [DOI] [PubMed] [Google Scholar]
  324. Mohsen A. W., Vockley J. High-level expression of an altered cDNA encoding human isovaleryl-CoA dehydrogenase in Escherichia coli. Gene. 1995 Jul 28;160(2):263–267. doi: 10.1016/0378-1119(95)00256-6. [DOI] [PubMed] [Google Scholar]
  325. Moks T., Abrahmsén L., Holmgren E., Bilich M., Olsson A., Uhlén M., Pohl G., Sterky C., Hultberg H., Josephson S. Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry. 1987 Aug 25;26(17):5239–5244. doi: 10.1021/bi00391a005. [DOI] [PubMed] [Google Scholar]
  326. Moore J. T., Uppal A., Maley F., Maley G. F. Overcoming inclusion body formation in a high-level expression system. Protein Expr Purif. 1993 Apr;4(2):160–163. doi: 10.1006/prep.1993.1022. [DOI] [PubMed] [Google Scholar]
  327. Morioka-Fujimoto K., Marumoto R., Fukuda T. Modified enterotoxin signal sequences increase secretion level of the recombinant human epidermal growth factor in Escherichia coli. J Biol Chem. 1991 Jan 25;266(3):1728–1732. [PubMed] [Google Scholar]
  328. Mottagui-Tabar S., Björnsson A., Isaksson L. A. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J. 1994 Jan 1;13(1):249–257. doi: 10.1002/j.1460-2075.1994.tb06255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Mukhija R., Rupa P., Pillai D., Garg L. C. High-level production and one-step purification of biologically active human growth hormone in Escherichia coli. Gene. 1995 Nov 20;165(2):303–306. doi: 10.1016/0378-1119(95)00525-b. [DOI] [PubMed] [Google Scholar]
  330. Munro S., Pelham H. R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986 Jul 18;46(2):291–300. doi: 10.1016/0092-8674(86)90746-4. [DOI] [PubMed] [Google Scholar]
  331. Murby M., Cedergren L., Nilsson J., Nygren P. A., Hammarberg B., Nilsson B., Enfors S. O., Uhlén M. Stabilization of recombinant proteins from proteolytic degradation in Escherichia coli using a dual affinity fusion strategy. Biotechnol Appl Biochem. 1991 Dec;14(3):336–346. [PubMed] [Google Scholar]
  332. Murby M., Samuelsson E., Nguyen T. N., Mignard L., Power U., Binz H., Uhlén M., Ståhl S. Hydrophobicity engineering to increase solubility and stability of a recombinant protein from respiratory syncytial virus. Eur J Biochem. 1995 May 15;230(1):38–44. doi: 10.1111/j.1432-1033.1995.tb20531.x. [DOI] [PubMed] [Google Scholar]
  333. Murby M., Uhlén M., Ståhl S. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr Purif. 1996 Mar;7(2):129–136. doi: 10.1006/prep.1996.0018. [DOI] [PubMed] [Google Scholar]
  334. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Nagahari K., Kanaya S., Munakata K., Aoyagi Y., Mizushima S. Secretion into the culture medium of a foreign gene product from Escherichia coli: use of the ompF gene for secretion of human beta-endorphin. EMBO J. 1985 Dec 16;4(13A):3589–3592. doi: 10.1002/j.1460-2075.1985.tb04121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Nagai H., Yuzawa H., Yura T. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10515–10519. doi: 10.1073/pnas.88.23.10515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Nagai K., Perutz M. F., Poyart C. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7252–7255. doi: 10.1073/pnas.82.21.7252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  339. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  340. Nakamura K., Inouye M. Construction of versatile expression cloning vehicles using the lipoprotein gene of Escherichia coli. EMBO J. 1982;1(6):771–775. doi: 10.1002/j.1460-2075.1982.tb01244.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Nakashima K., Kanamaru K., Mizuno T., Horikoshi K. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol. 1996 May;178(10):2994–2997. doi: 10.1128/jb.178.10.2994-2997.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Neri D., de Lalla C., Petrul H., Neri P., Winter G. Calmodulin as a versatile tag for antibody fragments. Biotechnology (N Y) 1995 Apr;13(4):373–377. doi: 10.1038/nbt0495-373. [DOI] [PubMed] [Google Scholar]
  343. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987 Jan 30;48(2):297–310. doi: 10.1016/0092-8674(87)90433-8. [DOI] [PubMed] [Google Scholar]
  344. Nguyen T. N., Hansson M., Ståhl S., Bächi T., Robert A., Domzig W., Binz H., Uhlén M. Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene. 1993 Jun 15;128(1):89–94. doi: 10.1016/0378-1119(93)90158-y. [DOI] [PubMed] [Google Scholar]
  345. Nierlich D. P., Murakawa G. J. The decay of bacterial messenger RNA. Prog Nucleic Acid Res Mol Biol. 1996;52:153–216. doi: 10.1016/s0079-6603(08)60967-8. [DOI] [PubMed] [Google Scholar]
  346. Nilsson B., Abrahmsén L. Fusions to staphylococcal protein A. Methods Enzymol. 1990;185:144–161. doi: 10.1016/0076-6879(90)85015-g. [DOI] [PubMed] [Google Scholar]
  347. Nilsson J., Nilsson P., Williams Y., Pettersson L., Uhlén M., Nygren P. A. Competitive elution of protein A fusion proteins allows specific recovery under mild conditions. Eur J Biochem. 1994 Aug 15;224(1):103–108. doi: 10.1111/j.1432-1033.1994.tb20000.x. [DOI] [PubMed] [Google Scholar]
  348. Nishi T., Itoh S. Enhancement of transcriptional activity of the Escherichia coli trp promoter by upstream A + T-rich regions. Gene. 1986;44(1):29–36. doi: 10.1016/0378-1119(86)90039-9. [DOI] [PubMed] [Google Scholar]
  349. Nishihara T., Iwabuchi T., Nohno T. A T7 promoter vector with a transcriptional terminator for stringent expression of foreign genes. Gene. 1994 Jul 22;145(1):145–146. doi: 10.1016/0378-1119(94)90338-7. [DOI] [PubMed] [Google Scholar]
  350. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  351. Nordström K., Uhlin B. E. Runaway-replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology (N Y) 1992 Jun;10(6):661–666. doi: 10.1038/nbt0692-661. [DOI] [PubMed] [Google Scholar]
  352. Nossal N. G., Heppel L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul 10;241(13):3055–3062. [PubMed] [Google Scholar]
  353. Novotny J., Ganju R. K., Smiley S. T., Hussey R. E., Luther M. A., Recny M. A., Siliciano R. F., Reinherz E. L. A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8646–8650. doi: 10.1073/pnas.88.19.8646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Nygren P. A., Ljungquist C., Trømborg H., Nustad K., Uhlén M. Species-dependent binding of serum albumins to the streptococcal receptor protein G. Eur J Biochem. 1990 Oct 5;193(1):143–148. doi: 10.1111/j.1432-1033.1990.tb19315.x. [DOI] [PubMed] [Google Scholar]
  355. Nygren P. A., Ståhl S., Uhlén M. Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 1994 May;12(5):184–188. doi: 10.1016/0167-7799(94)90080-9. [DOI] [PubMed] [Google Scholar]
  356. O'Connor C. D., Timmis K. N. Highly repressible expression system for cloning genes that specify potentially toxic proteins. J Bacteriol. 1987 Oct;169(10):4457–4462. doi: 10.1128/jb.169.10.4457-4462.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  357. Obukowicz M. G., Staten N. R., Krivi G. G. Enhanced heterologous gene expression in novel rpoH mutants of Escherichia coli. Appl Environ Microbiol. 1992 May;58(5):1511–1523. doi: 10.1128/aem.58.5.1511-1523.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Obukowicz M. G., Turner M. A., Wong E. Y., Tacon W. C. Secretion and export of IGF-1 in Escherichia coli strain JM101. Mol Gen Genet. 1988 Dec;215(1):19–25. doi: 10.1007/BF00331297. [DOI] [PubMed] [Google Scholar]
  359. Oka T., Sakamoto S., Miyoshi K., Fuwa T., Yoda K., Yamasaki M., Tamura G., Miyake T. Synthesis and secretion of human epidermal growth factor by Escherichia coli. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7212–7216. doi: 10.1073/pnas.82.21.7212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  360. Olins P. O., Devine C. S., Rangwala S. H., Kavka K. S. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene. 1988 Dec 15;73(1):227–235. doi: 10.1016/0378-1119(88)90329-0. [DOI] [PubMed] [Google Scholar]
  361. Olins P. O., Lee S. C. Recent advances in heterologous gene expression in Escherichia coli. Curr Opin Biotechnol. 1993 Oct;4(5):520–525. doi: 10.1016/0958-1669(93)90071-4. [DOI] [PubMed] [Google Scholar]
  362. Olins P. O., Rangwala S. H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J Biol Chem. 1989 Oct 15;264(29):16973–16976. [PubMed] [Google Scholar]
  363. Olins P. O., Rangwala S. H. Vector for enhanced translation of foreign genes in Escherichia coli. Methods Enzymol. 1990;185:115–119. doi: 10.1016/0076-6879(90)85012-d. [DOI] [PubMed] [Google Scholar]
  364. Omer C. A., Diehl R. E., Kral A. M. Bacterial expression and purification of human protein prenyltransferases using epitope-tagged, translationally coupled systems. Methods Enzymol. 1995;250:3–12. doi: 10.1016/0076-6879(95)50057-x. [DOI] [PubMed] [Google Scholar]
  365. Ostermeier M., De Sutter K., Georgiou G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem. 1996 May 3;271(18):10616–10622. doi: 10.1074/jbc.271.18.10616. [DOI] [PubMed] [Google Scholar]
  366. POLLOCK M. R., RICHMOND M. H. Low cyst(e)ine content of bacterial extracellular proteins: its possible physiological significance. Nature. 1962 May 5;194:446–449. doi: 10.1038/194446a0. [DOI] [PubMed] [Google Scholar]
  367. Pace C. N., Shirley B. A., McNutt M., Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996 Jan;10(1):75–83. doi: 10.1096/fasebj.10.1.8566551. [DOI] [PubMed] [Google Scholar]
  368. Persson M., Bergstrand M. G., Bülow L., Mosbach K. Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal Biochem. 1988 Aug 1;172(2):330–337. doi: 10.1016/0003-2697(88)90452-6. [DOI] [PubMed] [Google Scholar]
  369. Petersen C. Control of functional mRNA stability in bacteria: multiple mechanisms of nucleolytic and non-nucleolytic inactivation. Mol Microbiol. 1992 Feb;6(3):277–282. doi: 10.1111/j.1365-2958.1992.tb01469.x. [DOI] [PubMed] [Google Scholar]
  370. Pilot-Matias T. J., Pratt S. D., Lane B. C. High-level synthesis of the 12-kDa human FK506-binding protein in Escherichia coli using translational coupling. Gene. 1993 Jun 30;128(2):219–225. doi: 10.1016/0378-1119(93)90566-l. [DOI] [PubMed] [Google Scholar]
  371. Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
  372. Plückthun A. Mono- and bivalent antibody fragments produced in Escherichia coli: engineering, folding and antigen binding. Immunol Rev. 1992 Dec;130:151–188. doi: 10.1111/j.1600-065x.1992.tb01525.x. [DOI] [PubMed] [Google Scholar]
  373. Podhajska A. J., Hasan N., Szybalski W. Control of cloned gene expression by promoter inversion in vivo: construction of the heat-pulse-activated att-nutL-p-att-N module. Gene. 1985;40(1):163–168. doi: 10.1016/0378-1119(85)90038-1. [DOI] [PubMed] [Google Scholar]
  374. Pogge von Strandmann E., Zoidl C., Nakhei H., Holewa B., Pogge von Strandmann R., Lorenz P., Klein-Hitpass L., Ryffel G. U. A highly specific and sensitive monoclonal antibody detecting histidine-tagged recombinant proteins. Protein Eng. 1995 Jul;8(7):733–735. doi: 10.1093/protein/8.7.733. [DOI] [PubMed] [Google Scholar]
  375. Pohlner J., Krämer J., Meyer T. F. A plasmid system for high-level expression and in vitro processing of recombinant proteins. Gene. 1993 Aug 16;130(1):121–126. doi: 10.1016/0378-1119(93)90354-6. [DOI] [PubMed] [Google Scholar]
  376. Pollitt S., Zalkin H. Role of primary structure and disulfide bond formation in beta-lactamase secretion. J Bacteriol. 1983 Jan;153(1):27–32. doi: 10.1128/jb.153.1.27-32.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. Prickett K. S., Amberg D. C., Hopp T. P. A calcium-dependent antibody for identification and purification of recombinant proteins. Biotechniques. 1989 Jun;7(6):580–589. [PubMed] [Google Scholar]
  379. Proba K., Ge L., Plückthun A. Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene. 1995 Jul 4;159(2):203–207. doi: 10.1016/0378-1119(95)00018-2. [DOI] [PubMed] [Google Scholar]
  380. Proudfoot A. E., Power C. A., Hoogewerf A. J., Montjovent M. O., Borlat F., Offord R. E., Wells T. N. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem. 1996 Feb 2;271(5):2599–2603. doi: 10.1074/jbc.271.5.2599. [DOI] [PubMed] [Google Scholar]
  381. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  382. Pérez-Pérez J., Márquez G., Barbero J. L., Gutiérrez J. Increasing the efficiency of protein export in Escherichia coli. Biotechnology (N Y) 1994 Feb;12(2):178–180. doi: 10.1038/nbt0294-178. [DOI] [PubMed] [Google Scholar]
  383. Ramesh V., De A., Nagaraja V. Engineering hyperexpression of bacteriophage Mu C protein by removal of secondary structure at the translation initiation region. Protein Eng. 1994 Aug;7(8):1053–1057. doi: 10.1093/protein/7.8.1053. [DOI] [PubMed] [Google Scholar]
  384. Rangwala S. H., Finn R. F., Smith C. E., Berberich S. A., Salsgiver W. J., Stallings W. C., Glover G. I., Olins P. O. High-level production of active HIV-1 protease in Escherichia coli. Gene. 1992 Dec 15;122(2):263–269. doi: 10.1016/0378-1119(92)90214-a. [DOI] [PubMed] [Google Scholar]
  385. Rao L., Ross W., Appleman J. A., Gaal T., Leirmo S., Schlax P. J., Record M. T., Jr, Gourse R. L. Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength. J Mol Biol. 1994 Feb 4;235(5):1421–1435. doi: 10.1006/jmbi.1994.1098. [DOI] [PubMed] [Google Scholar]
  386. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  387. Richardson J. P. Transcription termination. Crit Rev Biochem Mol Biol. 1993;28(1):1–30. doi: 10.3109/10409239309082571. [DOI] [PubMed] [Google Scholar]
  388. Rinas U., Tsai L. B., Lyons D., Fox G. M., Stearns G., Fieschko J., Fenton D., Bailey J. E. Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Biotechnology (N Y) 1992 Apr;10(4):435–440. doi: 10.1038/nbt0492-435. [DOI] [PubMed] [Google Scholar]
  389. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992 May;6(9):1219–1229. doi: 10.1111/j.1365-2958.1992.tb01561.x. [DOI] [PubMed] [Google Scholar]
  390. Robben J., Massie G., Bosmans E., Wellens B., Volckaert G. An Escherichia coli plasmid vector system for high-level production and purification of heterologous peptides fused to active chloramphenicol acetyltransferase. Gene. 1993 Apr 15;126(1):109–113. doi: 10.1016/0378-1119(93)90597-v. [DOI] [PubMed] [Google Scholar]
  391. Roberts T. M., Kacich R., Ptashne M. A general method for maximizing the expression of a cloned gene. Proc Natl Acad Sci U S A. 1979 Feb;76(2):760–764. doi: 10.1073/pnas.76.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  393. Ron D., Dressler H. pGSTag--a versatile bacterial expression plasmid for enzymatic labeling of recombinant proteins. Biotechniques. 1992 Dec;13(6):866–869. [PubMed] [Google Scholar]
  394. Rosenberg A. H., Goldman E., Dunn J. J., Studier F. W., Zubay G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol. 1993 Feb;175(3):716–722. doi: 10.1128/jb.175.3.716-722.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  395. Rosenberg A. H., Studier F. W. T7 RNA polymerase can direct expression of influenza virus cap-binding protein (PB2) in Escherichia coli. Gene. 1987;59(2-3):191–200. doi: 10.1016/0378-1119(87)90327-1. [DOI] [PubMed] [Google Scholar]
  396. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  397. Rosenwasser T. A., Hogquist K. A., Nothwehr S. F., Bradford-Goldberg S., Olins P. O., Chaplin D. D., Gordon J. I. Compartmentalization of mammalian proteins produced in Escherichia coli. J Biol Chem. 1990 Aug 5;265(22):13066–13073. [PubMed] [Google Scholar]
  398. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  399. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  400. Rudolph R., Lilie H. In vitro folding of inclusion body proteins. FASEB J. 1996 Jan;10(1):49–56. [PubMed] [Google Scholar]
  401. Russel D. R., Bennett G. N. Cloning of small DNA fragments containing the Escherichia coli tryptophan operon promoter and operator. Gene. 1982 Jan;17(1):9–18. doi: 10.1016/0378-1119(82)90096-8. [DOI] [PubMed] [Google Scholar]
  402. Russell D. R., Bennett G. N. Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the -35 to -10 spacing. Gene. 1982 Dec;20(2):231–243. doi: 10.1016/0378-1119(82)90042-7. [DOI] [PubMed] [Google Scholar]
  403. Rüther U., Müller-Hill B. Easy identification of cDNA clones. EMBO J. 1983;2(10):1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  404. Sagawa H., Ohshima A., Kato I. A tightly regulated expression system in Escherichia coli with SP6 RNA polymerase. Gene. 1996 Feb 2;168(1):37–41. doi: 10.1016/0378-1119(95)00644-3. [DOI] [PubMed] [Google Scholar]
  405. Saier M. H., Jr Differential codon usage: a safeguard against inappropriate expression of specialized genes? FEBS Lett. 1995 Mar 27;362(1):1–4. doi: 10.1016/0014-5793(95)00185-c. [DOI] [PubMed] [Google Scholar]
  406. Saier M. H., Jr, Werner P. K., Müller M. Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process. Microbiol Rev. 1989 Sep;53(3):333–366. doi: 10.1128/mr.53.3.333-366.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  407. Sali A., Shakhnovich E., Karplus M. How does a protein fold? Nature. 1994 May 19;369(6477):248–251. doi: 10.1038/369248a0. [DOI] [PubMed] [Google Scholar]
  408. Samuelsson E., Moks T., Nilsson B., Uhlen M. Enhanced in vitro refolding of insulin-like growth factor I using a solubilizing fusion partner. Biochemistry. 1994 Apr 12;33(14):4207–4211. doi: 10.1021/bi00180a013. [DOI] [PubMed] [Google Scholar]
  409. Samuelsson E., Wadensten H., Hartmanis M., Moks T., Uhlén M. Facilitated in vitro refolding of human recombinant insulin-like growth factor I using a solubilizing fusion partner. Biotechnology (N Y) 1991 Apr;9(4):363–366. doi: 10.1038/nbt0491-363. [DOI] [PubMed] [Google Scholar]
  410. San K. Y., Bennett G. N., Aristidou A. A., Chou C. H. Strategies in high-level expression of recombinant protein in Escherichia coli. Ann N Y Acad Sci. 1994 May 2;721:257–267. doi: 10.1111/j.1749-6632.1994.tb47399.x. [DOI] [PubMed] [Google Scholar]
  411. San K. Y., Bennett G. N., Chou C. H., Aristidou A. A. An optimization study of a pH-inducible promoter system for high-level recombinant protein production in Escherichia coli. Ann N Y Acad Sci. 1994 May 2;721:268–276. doi: 10.1111/j.1749-6632.1994.tb47400.x. [DOI] [PubMed] [Google Scholar]
  412. Sandler P., Weisblum B. Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5'-to-3' nucleolytic cleavage of the ermA transcript. J Bacteriol. 1989 Dec;171(12):6680–6688. doi: 10.1128/jb.171.12.6680-6688.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  413. Sandler P., Weisblum B. Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. J Mol Biol. 1988 Oct 20;203(4):905–915. doi: 10.1016/0022-2836(88)90116-7. [DOI] [PubMed] [Google Scholar]
  414. Sandman K., Grayling R. A., Reeve J. N. Improved N-terminal processing of recombinant proteins synthesized in Escherichia coli. Biotechnology (N Y) 1995 May;13(5):504–506. doi: 10.1038/nbt0595-504. [DOI] [PubMed] [Google Scholar]
  415. Sano T., Cantor C. R. Expression vectors for streptavidin-containing chimeric proteins. Biochem Biophys Res Commun. 1991 Apr 30;176(2):571–577. doi: 10.1016/s0006-291x(05)80222-0. [DOI] [PubMed] [Google Scholar]
  416. Sano T., Glazer A. N., Cantor C. R. A streptavidin-metallothionein chimera that allows specific labeling of biological materials with many different heavy metal ions. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1534–1538. doi: 10.1073/pnas.89.5.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  417. Sassenfeld H. M. Engineering proteins for purification. Trends Biotechnol. 1990 Apr;8(4):88–93. doi: 10.1016/0167-7799(90)90145-n. [DOI] [PubMed] [Google Scholar]
  418. Sato K., Sato M. H., Yamaguchi A., Yoshida M. Tetracycline/H+ antiporter was degraded rapidly in Escherichia coli cells when truncated at last transmembrane helix and this degradation was protected by overproduced GroEL/ES. Biochem Biophys Res Commun. 1994 Jul 15;202(1):258–264. doi: 10.1006/bbrc.1994.1921. [DOI] [PubMed] [Google Scholar]
  419. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  420. Schatz P. J., Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990;24:215–248. doi: 10.1146/annurev.ge.24.120190.001243. [DOI] [PubMed] [Google Scholar]
  421. Schatz P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993 Oct;11(10):1138–1143. doi: 10.1038/nbt1093-1138. [DOI] [PubMed] [Google Scholar]
  422. Schauder B., Blöcker H., Frank R., McCarthy J. E. Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene. 1987;52(2-3):279–283. doi: 10.1016/0378-1119(87)90054-0. [DOI] [PubMed] [Google Scholar]
  423. Schauder B., McCarthy J. E. The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo. Gene. 1989 May 15;78(1):59–72. doi: 10.1016/0378-1119(89)90314-4. [DOI] [PubMed] [Google Scholar]
  424. Schein C. H., Boix E., Haugg M., Holliger K. P., Hemmi S., Frank G., Schwalbe H. Secretion of mammalian ribonucleases from Escherichia coli using the signal sequence of murine spleen ribonuclease. Biochem J. 1992 Apr 1;283(Pt 1):137–144. doi: 10.1042/bj2830137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  425. Schein C. H. Optimizing protein folding to the native state in bacteria. Curr Opin Biotechnol. 1991 Oct;2(5):746–750. doi: 10.1016/0958-1669(91)90046-8. [DOI] [PubMed] [Google Scholar]
  426. Schein C. H. Solubility and secretability. Curr Opin Biotechnol. 1993 Aug;4(4):456–461. doi: 10.1016/0958-1669(93)90012-l. [DOI] [PubMed] [Google Scholar]
  427. Scherer G. F., Walkinshaw M. D., Arnott S., Morré D. J. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 1980 Sep 11;8(17):3895–3907. doi: 10.1093/nar/8.17.3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  428. Schmidt T. G., Skerra A. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 1993 Jan;6(1):109–122. doi: 10.1093/protein/6.1.109. [DOI] [PubMed] [Google Scholar]
  429. Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986 Apr 5;188(3):415–431. doi: 10.1016/0022-2836(86)90165-8. [DOI] [PubMed] [Google Scholar]
  430. Schoner B. E., Belagaje R. M., Schoner R. G. Enhanced translational efficiency with two-cistron expression system. Methods Enzymol. 1990;185:94–103. doi: 10.1016/0076-6879(90)85010-l. [DOI] [PubMed] [Google Scholar]
  431. Schoner B. E., Belagaje R. M., Schoner R. G. Translation of a synthetic two-cistron mRNA in Escherichia coli. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8506–8510. doi: 10.1073/pnas.83.22.8506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  432. Schoner B. E., Hsiung H. M., Belagaje R. M., Mayne N. G., Schoner R. G. Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5403–5407. doi: 10.1073/pnas.81.17.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  433. Schümperli D., McKenney K., Sobieski D. A., Rosenberg M. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Cell. 1982 Oct;30(3):865–871. doi: 10.1016/0092-8674(82)90291-4. [DOI] [PubMed] [Google Scholar]
  434. Scolnick E., Tompkins R., Caskey T., Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968 Oct;61(2):768–774. doi: 10.1073/pnas.61.2.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  435. Sharp P. M., Bulmer M. Selective differences among translation termination codons. Gene. 1988;63(1):141–145. doi: 10.1016/0378-1119(88)90553-7. [DOI] [PubMed] [Google Scholar]
  436. Sharp P. M., Cowe E., Higgins D. G., Shields D. C., Wolfe K. H., Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988 Sep 12;16(17):8207–8211. doi: 10.1093/nar/16.17.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  437. Shean C. S., Gottesman M. E. Translation of the prophage lambda cl transcript. Cell. 1992 Aug 7;70(3):513–522. doi: 10.1016/0092-8674(92)90175-c. [DOI] [PubMed] [Google Scholar]
  438. Shen S. H. Multiple joined genes prevent product degradation in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4627–4631. doi: 10.1073/pnas.81.15.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  439. Shen T. J., Ho N. T., Simplaceanu V., Zou M., Green B. N., Tam M. F., Ho C. Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8108–8112. doi: 10.1073/pnas.90.17.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  440. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  441. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  442. Shirakawa M., Tsurimoto T., Matsubara K. Plasmid vectors designed for high-efficiency expression controlled by the portable recA promoter-operator of Escherichia coli. Gene. 1984 Apr;28(1):127–132. doi: 10.1016/0378-1119(84)90096-9. [DOI] [PubMed] [Google Scholar]
  443. Shirano Y., Shibata D. Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Lett. 1990 Oct 1;271(1-2):128–130. doi: 10.1016/0014-5793(90)80388-y. [DOI] [PubMed] [Google Scholar]
  444. Shuman H. A., Silhavy T. J., Beckwith J. R. Labeling of proteins with beta-galactosidase by gene fusion. Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system. J Biol Chem. 1980 Jan 10;255(1):168–174. [PubMed] [Google Scholar]
  445. Simon L. D., Randolph B., Irwin N., Binkowski G. Stabilization of proteins by a bacteriophage T4 gene cloned in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2059–2062. doi: 10.1073/pnas.80.7.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  446. Simon L. D., Tomczak K., St John A. C. Bacteriophages inhibit degradation of abnormal proteins in E. coli. Nature. 1978 Oct 5;275(5679):424–428. doi: 10.1038/275424a0. [DOI] [PubMed] [Google Scholar]
  447. Singer B. S., Gold L. Phage T4 expression vector: protection from proteolysis. Gene. 1991 Sep 30;106(1):1–6. doi: 10.1016/0378-1119(91)90558-s. [DOI] [PubMed] [Google Scholar]
  448. Skerra A. Bacterial expression of immunoglobulin fragments. Curr Opin Immunol. 1993 Apr;5(2):256–262. doi: 10.1016/0952-7915(93)90014-j. [DOI] [PubMed] [Google Scholar]
  449. Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene. 1994 Dec 30;151(1-2):131–135. doi: 10.1016/0378-1119(94)90643-2. [DOI] [PubMed] [Google Scholar]
  450. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  451. Snyder W. B., Silhavy T. J. Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent. J Bacteriol. 1992 Sep;174(17):5661–5668. doi: 10.1128/jb.174.17.5661-5668.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  452. Sprengart M. L., Fatscher H. P., Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res. 1990 Apr 11;18(7):1719–1723. doi: 10.1093/nar/18.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  453. Sprengart M. L., Fuchs E., Porter A. G. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 1996 Feb 1;15(3):665–674. [PMC free article] [PubMed] [Google Scholar]
  454. Stader J. A., Silhavy T. J. Engineering Escherichia coli to secrete heterologous gene products. Methods Enzymol. 1990;185:166–187. doi: 10.1016/0076-6879(90)85017-i. [DOI] [PubMed] [Google Scholar]
  455. Stanssens P., Remaut E., Fiers W. Alterations upstream from the Shine-Dalgarno region and their effect on bacterial gene expression. Gene. 1985;36(3):211–223. doi: 10.1016/0378-1119(85)90176-3. [DOI] [PubMed] [Google Scholar]
  456. Stark M. J. Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene. 1987;51(2-3):255–267. doi: 10.1016/0378-1119(87)90314-3. [DOI] [PubMed] [Google Scholar]
  457. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  458. Stempfer G., Höll-Neugebauer B., Kopetzki E., Rudolph R. A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor. Nat Biotechnol. 1996 Apr;14(4):481–484. doi: 10.1038/nbt0496-481. [DOI] [PubMed] [Google Scholar]
  459. Stempfer G., Höll-Neugebauer B., Rudolph R. Improved refolding of an immobilized fusion protein. Nat Biotechnol. 1996 Mar;14(3):329–334. doi: 10.1038/nbt0396-329. [DOI] [PubMed] [Google Scholar]
  460. Stormo G. D., Schneider T. D., Gold L. M. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 1982 May 11;10(9):2971–2996. doi: 10.1093/nar/10.9.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  461. Strandberg L., Enfors S. O. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol. 1991 Jun;57(6):1669–1674. doi: 10.1128/aem.57.6.1669-1674.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  462. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  463. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  464. Stueber D., Bujard H. Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid specified genes. EMBO J. 1982;1(11):1399–1404. doi: 10.1002/j.1460-2075.1982.tb01329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  465. Ståhl S., Nygren P. A., Sjölander A., Uhlén M. Engineered bacterial receptors in immunology. Curr Opin Immunol. 1993 Apr;5(2):272–277. doi: 10.1016/0952-7915(93)90017-m. [DOI] [PubMed] [Google Scholar]
  466. Su X., Prestwood A. K., McGraw R. A. Production of recombinant porcine tumor necrosis factor alpha in a novel E. coli expression system. Biotechniques. 1992 Nov;13(5):756–762. [PubMed] [Google Scholar]
  467. Summers R. G., Knowles J. R. Illicit secretion of a cytoplasmic protein into the periplasm of Escherichia coli requires a signal peptide plus a portion of the cognate secreted protein. Demarcation of the critical region of the mature protein. J Biol Chem. 1989 Nov 25;264(33):20074–20081. [PubMed] [Google Scholar]
  468. Suominen I., Karp M., Lähde M., Kopio A., Glumoff T., Meyer P., Mäntsälä P. Extracellular production of cloned alpha-amylase by Escherichia coli. Gene. 1987;61(2):165–176. doi: 10.1016/0378-1119(87)90111-9. [DOI] [PubMed] [Google Scholar]
  469. Suter-Crazzolara C., Unsicker K. Improved expression of toxic proteins in E. coli. Biotechniques. 1995 Aug;19(2):202–204. [PubMed] [Google Scholar]
  470. Swamy K. H., Goldberg A. L. E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature. 1981 Aug 13;292(5824):652–654. doi: 10.1038/292652a0. [DOI] [PubMed] [Google Scholar]
  471. Swamy K. H., Goldberg A. L. Subcellular distribution of various proteases in Escherichia coli. J Bacteriol. 1982 Mar;149(3):1027–1033. doi: 10.1128/jb.149.3.1027-1033.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  472. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  473. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  474. Tacon W., Carey N., Emtage S. The construction and characterisation of plasmid vectors suitable for the expression of all DNA phases under the control of the E. coli tryptophan promoter. Mol Gen Genet. 1980 Feb;177(3):427–438. doi: 10.1007/BF00271481. [DOI] [PubMed] [Google Scholar]
  475. Talmadge K., Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1830–1833. doi: 10.1073/pnas.79.6.1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  476. Tanabe H., Goldstein J., Yang M., Inouye M. Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol. 1992 Jun;174(12):3867–3873. doi: 10.1128/jb.174.12.3867-3873.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  477. Tarragona-Fiol A., Taylorson C. J., Ward J. M., Rabin B. R. Production of mature bovine pancreatic ribonuclease in Escherichia coli. Gene. 1992 Sep 10;118(2):239–245. doi: 10.1016/0378-1119(92)90194-t. [DOI] [PubMed] [Google Scholar]
  478. Tate W. P., Brown C. M. Translational termination: "stop" for protein synthesis or "pause" for regulation of gene expression. Biochemistry. 1992 Mar 10;31(9):2443–2450. doi: 10.1021/bi00124a001. [DOI] [PubMed] [Google Scholar]
  479. Taylor A., Brown D. P., Kadam S., Maus M., Kohlbrenner W. E., Weigl D., Turon M. C., Katz L. High-level expression and purification of mature HIV-1 protease in Escherichia coli under control of the araBAD promoter. Appl Microbiol Biotechnol. 1992 May;37(2):205–210. doi: 10.1007/BF00178172. [DOI] [PubMed] [Google Scholar]
  480. Taylor M. E., Drickamer K. Carbohydrate-recognition domains as tools for rapid purification of recombinant eukaryotic proteins. Biochem J. 1991 Mar 1;274(Pt 2):575–580. doi: 10.1042/bj2740575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  481. Tessier L. H., Sondermeyer P., Faure T., Dreyer D., Benavente A., Villeval D., Courtney M., Lecocq J. P. The influence of mRNA primary and secondary structure on human IFN-gamma gene expression in E. coli. Nucleic Acids Res. 1984 Oct 25;12(20):7663–7675. doi: 10.1093/nar/12.20.7663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  482. Thomann H. U., Ibba M., Hong K. W., Söll D. Homologous expression and purification of mutants of an essential protein by reverse epitope-tagging. Biotechnology (N Y) 1996 Jan;14(1):50–55. doi: 10.1038/nbt0196-50. [DOI] [PubMed] [Google Scholar]
  483. Thomas C. D., Modha J., Razzaq T. M., Cullis P. M., Rivett A. J. Controlled high-level expression of the lon gene of Escherichia coli allows overproduction of Lon protease. Gene. 1993 Dec 22;136(1-2):237–242. doi: 10.1016/0378-1119(93)90471-e. [DOI] [PubMed] [Google Scholar]
  484. Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
  485. Tobias J. W., Shrader T. E., Rocap G., Varshavsky A. The N-end rule in bacteria. Science. 1991 Nov 29;254(5036):1374–1377. doi: 10.1126/science.1962196. [DOI] [PubMed] [Google Scholar]
  486. Trudel P., Provost S., Massie B., Chartrand P., Wall L. pGATA: a positive selection vector based on the toxicity of the transcription factor GATA-1 to bacteria. Biotechniques. 1996 Apr;20(4):684–693. doi: 10.2144/19962004684. [DOI] [PubMed] [Google Scholar]
  487. Tzareva N. V., Makhno V. I., Boni I. V. Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett. 1994 Jan 10;337(2):189–194. doi: 10.1016/0014-5793(94)80271-8. [DOI] [PubMed] [Google Scholar]
  488. Uhlén M., Forsberg G., Moks T., Hartmanis M., Nilsson B. Fusion proteins in biotechnology. Curr Opin Biotechnol. 1992 Aug;3(4):363–369. doi: 10.1016/0958-1669(92)90164-e. [DOI] [PubMed] [Google Scholar]
  489. Uhlén M., Moks T. Gene fusions for purpose of expression: an introduction. Methods Enzymol. 1990;185:129–143. doi: 10.1016/0076-6879(90)85014-f. [DOI] [PubMed] [Google Scholar]
  490. Uhlén M., Nilsson B., Guss B., Lindberg M., Gatenbeck S., Philipson L. Gene fusion vectors based on the gene for staphylococcal protein A. Gene. 1983 Sep;23(3):369–378. doi: 10.1016/0378-1119(83)90025-2. [DOI] [PubMed] [Google Scholar]
  491. Ullmann A. One-step purification of hybrid proteins which have beta-galactosidase activity. Gene. 1984 Jul-Aug;29(1-2):27–31. doi: 10.1016/0378-1119(84)90162-8. [DOI] [PubMed] [Google Scholar]
  492. Varshavsky A. The N-end rule. Cell. 1992 May 29;69(5):725–735. doi: 10.1016/0092-8674(92)90285-k. [DOI] [PubMed] [Google Scholar]
  493. Vasquez J. R., Evnin L. B., Higaki J. N., Craik C. S. An expression system for trypsin. J Cell Biochem. 1989 Mar;39(3):265–276. doi: 10.1002/jcb.240390306. [DOI] [PubMed] [Google Scholar]
  494. Vellanoweth R. L., Rabinowitz J. C. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol. 1992 May;6(9):1105–1114. doi: 10.1111/j.1365-2958.1992.tb01548.x. [DOI] [PubMed] [Google Scholar]
  495. Villa-Komaroff L., Efstratiadis A., Broome S., Lomedico P., Tizard R., Naber S. P., Chick W. L., Gilbert W. A bacterial clone synthesizing proinsulin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3727–3731. doi: 10.1073/pnas.75.8.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  496. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1992 May 11;20 (Suppl):2111–2118. doi: 10.1093/nar/20.suppl.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  497. Wall J. G., Plückthun A. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):507–516. doi: 10.1016/0958-1669(95)80084-0. [DOI] [PubMed] [Google Scholar]
  498. Wang L. F., Yu M., White J. R., Eaton B. T. BTag: a novel six-residue epitope tag for surveillance and purification of recombinant proteins. Gene. 1996 Feb 22;169(1):53–58. doi: 10.1016/0378-1119(95)00795-4. [DOI] [PubMed] [Google Scholar]
  499. Warburton N., Boseley P. G., Porter A. G. Increased expression of a cloned gene by local mutagenesis of its promoter and ribosome binding site. Nucleic Acids Res. 1983 Sep 10;11(17):5837–5854. doi: 10.1093/nar/11.17.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  500. Ward E. S. Expression and secretion of T-cell receptor V alpha and V beta domains using Escherichia coli as a host. Scand J Immunol. 1991 Aug;34(2):215–220. doi: 10.1111/j.1365-3083.1991.tb01539.x. [DOI] [PubMed] [Google Scholar]
  501. Ward E. S., Güssow D., Griffiths A. D., Jones P. T., Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989 Oct 12;341(6242):544–546. doi: 10.1038/341544a0. [DOI] [PubMed] [Google Scholar]
  502. Ward G. A., Stover C. K., Moss B., Fuerst T. R. Stringent chemical and thermal regulation of recombinant gene expression by vaccinia virus vectors in mammalian cells. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6773–6777. doi: 10.1073/pnas.92.15.6773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  503. Warne S. R., Thomas C. M., Nugent M. E., Tacon W. C. Use of a modified Escherichia coli trpR gene to obtain tight regulation of high-copy-number expression vectors. Gene. 1986;46(1):103–112. doi: 10.1016/0378-1119(86)90172-1. [DOI] [PubMed] [Google Scholar]
  504. Wickner W. Assembly of proteins into membranes. Science. 1980 Nov 21;210(4472):861–868. doi: 10.1126/science.7001628. [DOI] [PubMed] [Google Scholar]
  505. Wikström P. M., Lind L. K., Berg D. E., Björk G. R. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. J Mol Biol. 1992 Apr 20;224(4):949–966. doi: 10.1016/0022-2836(92)90462-s. [DOI] [PubMed] [Google Scholar]
  506. Wilkinson D. L., Harrison R. G. Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology (N Y) 1991 May;9(5):443–448. doi: 10.1038/nbt0591-443. [DOI] [PubMed] [Google Scholar]
  507. Wilkinson D. L., Ma N. T., Haught C., Harrison R. G. Purification by immobilized metal affinity chromatography of human atrial natriuretic peptide expressed in a novel thioredoxin fusion protein. Biotechnol Prog. 1995 May-Jun;11(3):265–269. doi: 10.1021/bp00033a004. [DOI] [PubMed] [Google Scholar]
  508. Williams K. L., Emslie K. R., Slade M. B. Recombinant glycoprotein production in the slime mould Dictyostelium discoideum. Curr Opin Biotechnol. 1995 Oct;6(5):538–542. doi: 10.1016/0958-1669(95)80089-1. [DOI] [PubMed] [Google Scholar]
  509. Wilson B. S., Kautzer C. R., Antelman D. E. Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis. Biotechniques. 1994 Nov;17(5):944–953. [PubMed] [Google Scholar]
  510. Wilson K. S., von Hippel P. H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8793–8797. doi: 10.1073/pnas.92.19.8793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  511. Wittliff J. L., Wenz L. L., Dong J., Nawaz Z., Butt T. R. Expression and characterization of an active human estrogen receptor as a ubiquitin fusion protein from Escherichia coli. J Biol Chem. 1990 Dec 15;265(35):22016–22022. [PubMed] [Google Scholar]
  512. Wolber V., Maeda K., Schumann R., Brandmeier B., Wiesmüller L., Wittinghofer A. A universal expression-purification system based on the coiled-coil interaction of myosin heavy chain. Biotechnology (N Y) 1992 Aug;10(8):900–904. doi: 10.1038/nbt0892-900. [DOI] [PubMed] [Google Scholar]
  513. Wong H. C., Chang S. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci U S A. 1986 May;83(10):3233–3237. doi: 10.1073/pnas.83.10.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  514. Wülfing C., Plückthun A. A versatile and highly repressible Escherichia coli expression system based on invertible promoters: expression of a gene encoding a toxic product. Gene. 1993 Dec 22;136(1-2):199–203. doi: 10.1016/0378-1119(93)90464-e. [DOI] [PubMed] [Google Scholar]
  515. Wülfing C., Plückthun A. Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. J Mol Biol. 1994 Oct 7;242(5):655–669. doi: 10.1006/jmbi.1994.1615. [DOI] [PubMed] [Google Scholar]
  516. Wülfing C., Plückthun A. Protein folding in the periplasm of Escherichia coli. Mol Microbiol. 1994 Jun;12(5):685–692. doi: 10.1111/j.1365-2958.1994.tb01056.x. [DOI] [PubMed] [Google Scholar]
  517. Xue G. P., Johnson J. S., Smyth D. J., Dierens L. M., Wang X., Simpson G. D., Gobius K. S., Aylward J. H. Temperature-regulated expression of the tac/lacl system for overproduction of a fungal xylanase in Escherichia coli. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):120–126. doi: 10.1007/s002530050658. [DOI] [PubMed] [Google Scholar]
  518. Yabuta M., Onai-Miura S., Ohsuye K. Thermo-inducible expression of a recombinant fusion protein by Escherichia coli lac repressor mutants. J Biotechnol. 1995 Feb 21;39(1):67–73. doi: 10.1016/0168-1656(94)00144-2. [DOI] [PubMed] [Google Scholar]
  519. Yamada M., Kubo M., Miyake T., Sakaguchi R., Higo Y., Imanaka T. Promoter sequence analysis in Bacillus and Escherichia: construction of strong promoters in E. coli. Gene. 1991 Mar 1;99(1):109–114. doi: 10.1016/0378-1119(91)90041-9. [DOI] [PubMed] [Google Scholar]
  520. Yamamoto T., Imamoto F. Differential stability of trp messenger RNA synthesized originating at the trp promoter and pL promoter of lambda trp phage. J Mol Biol. 1975 Feb 25;92(2):289–304. doi: 10.1016/0022-2836(75)90228-4. [DOI] [PubMed] [Google Scholar]
  521. Yamano N., Kawata Y., Kojima H., Yoda K., Yamasaki M. In vivo biotinylation of fusion proteins expressed in Escherichia coli with a sequence of Propionibacterium freudenreichii transcarboxylase 1.3S biotin subunit. Biosci Biotechnol Biochem. 1992 Jul;56(7):1017–1026. doi: 10.1271/bbb.56.1017. [DOI] [PubMed] [Google Scholar]
  522. Yang M. T., Scott H. B., 2nd, Gardner J. F. Transcription termination at the thr attenuator. Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. J Biol Chem. 1995 Oct 6;270(40):23330–23336. doi: 10.1074/jbc.270.40.23330. [DOI] [PubMed] [Google Scholar]
  523. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  524. Yansura D. G. Expression as trpE fusion. Methods Enzymol. 1990;185:161–166. doi: 10.1016/0076-6879(90)85016-h. [DOI] [PubMed] [Google Scholar]
  525. Yansura D. G., Henner D. J. Use of Escherichia coli trp promoter for direct expression of proteins. Methods Enzymol. 1990;185:54–60. doi: 10.1016/0076-6879(90)85007-b. [DOI] [PubMed] [Google Scholar]
  526. Yasukawa T., Kanei-Ishii C., Maekawa T., Fujimoto J., Yamamoto T., Ishii S. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J Biol Chem. 1995 Oct 27;270(43):25328–25331. doi: 10.1074/jbc.270.43.25328. [DOI] [PubMed] [Google Scholar]
  527. Yee L., Blanch H. W. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology (N Y) 1992 Dec;10(12):1550–1556. doi: 10.1038/nbt1292-1550. [DOI] [PubMed] [Google Scholar]
  528. Yike I., Zhang Y., Ye J., Dearborn D. G. Expression in Escherichia coli of cytoplasmic portions of the cystic fibrosis transmembrane conductance regulator: apparent bacterial toxicity of peptides containing R-domain sequences. Protein Expr Purif. 1996 Feb;7(1):45–50. doi: 10.1006/prep.1996.0007. [DOI] [PubMed] [Google Scholar]
  529. Young J. F., Desselberger U., Palese P., Ferguson B., Shatzman A. R., Rosenberg M. Efficient expression of influenza virus NS1 nonstructural proteins in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6105–6109. doi: 10.1073/pnas.80.19.6105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  530. Zacharias M., Göringer H. U., Wagner R. Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. Biochemistry. 1992 Mar 10;31(9):2621–2628. doi: 10.1021/bi00124a024. [DOI] [PubMed] [Google Scholar]
  531. Zentgraf H., Frey M., Schwinn S., Tessmer C., Willemann B., Samstag Y., Velhagen I. Detection of histidine-tagged fusion proteins by using a high-specific mouse monoclonal anti-histidine tag antibody. Nucleic Acids Res. 1995 Aug 25;23(16):3347–3348. doi: 10.1093/nar/23.16.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  532. Zhang J. R., Deutscher M. P. Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D. Evidence for translational regulation of a putative tRNA processing enzyme. J Biol Chem. 1989 Oct 25;264(30):18228–18233. [PubMed] [Google Scholar]
  533. Zhang J. R., Deutscher M. P. Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 1988 Jul 25;16(14A):6265–6278. doi: 10.1093/nar/16.14.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  534. Zhang J., Deutscher M. P. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2605–2609. doi: 10.1073/pnas.89.7.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  535. Zhang S. P., Zubay G., Goldman E. Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene. 1991 Aug 30;105(1):61–72. doi: 10.1016/0378-1119(91)90514-c. [DOI] [PubMed] [Google Scholar]
  536. d'Aubenton Carafa Y., Brody E., Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol. 1990 Dec 20;216(4):835–858. doi: 10.1016/s0022-2836(99)80005-9. [DOI] [PubMed] [Google Scholar]
  537. de Boer H. A., Comstock L. J., Vasser M. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A. 1983 Jan;80(1):21–25. doi: 10.1073/pnas.80.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  538. de Smit M. H., van Duin J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol. 1994 Nov 25;244(2):144–150. doi: 10.1006/jmbi.1994.1714. [DOI] [PubMed] [Google Scholar]
  539. de Smit M. H., van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668–7672. doi: 10.1073/pnas.87.19.7668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  540. de Smit M. H., van Duin J. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Mol Biol. 1994 Jan 7;235(1):173–184. doi: 10.1016/s0022-2836(05)80024-5. [DOI] [PubMed] [Google Scholar]
  541. de la Torre J. C., Ortín J., Domingo E., Delamarter J., Allet B., Davies J., Bertrand K. P., Wray L. V., Jr, Reznikoff W. S. Plasmid vectors based on Tn10 DNA: gene expression regulated by tetracycline. Plasmid. 1984 Sep;12(2):103–110. doi: 10.1016/0147-619x(84)90056-8. [DOI] [PubMed] [Google Scholar]
  542. di Guan C., Li P., Riggs P. D., Inouye H. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene. 1988 Jul 15;67(1):21–30. doi: 10.1016/0378-1119(88)90004-2. [DOI] [PubMed] [Google Scholar]
  543. van Dijl J. M., de Jong A., Smith H., Bron S., Venema G. Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol Gen Genet. 1991 May;227(1):40–48. doi: 10.1007/BF00260704. [DOI] [PubMed] [Google Scholar]
  544. von Heijne G., Abrahmsén L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett. 1989 Feb 27;244(2):439–446. doi: 10.1016/0014-5793(89)80579-4. [DOI] [PubMed] [Google Scholar]
  545. von Heijne G. The signal peptide. J Membr Biol. 1990 May;115(3):195–201. doi: 10.1007/BF01868635. [DOI] [PubMed] [Google Scholar]
  546. von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES