Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1996 Dec;60(4):697–721. doi: 10.1128/mr.60.4.697-721.1996

The secretory pathway of protists: spatial and functional organization and evolution.

B Becker 1, M Melkonian 1
PMCID: PMC239460  PMID: 8987360

Abstract

All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam R. D. The biology of Giardia spp. Microbiol Rev. 1991 Dec;55(4):706–732. doi: 10.1128/mr.55.4.706-732.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adoutte A., de Loubresse N. G., Beisson J. Proteolytic cleavage and maturation of the crystalline secretion products of Paramecium. J Mol Biol. 1984 Dec 25;180(4):1065–1081. doi: 10.1016/0022-2836(84)90271-7. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Kallen K. J. Is plasma membrane lipid composition defined in the exocytic or the endocytic pathway? Trends Cell Biol. 1994 Oct;4(10):350–353. doi: 10.1016/0962-8924(94)90076-0. [DOI] [PubMed] [Google Scholar]
  4. Allan V. Membrane traffic motors. FEBS Lett. 1995 Aug 1;369(1):101–106. doi: 10.1016/0014-5793(95)00615-g. [DOI] [PubMed] [Google Scholar]
  5. Allen R. D., Fok A. K. Nonclathrin vesicle coats and filament networks in the transition zone and trans-Golgi region of the Golgi complex of Paramecium. J Struct Biol. 1993 May-Jun;110(3):215–226. doi: 10.1006/jsbi.1993.1024. [DOI] [PubMed] [Google Scholar]
  6. Allen R. D., Schroeder C. C., Fok A. K. Intracellular binding of wheat germ agglutinin by Golgi complexes, phagosomes, and lysosomes of Paramecium multimicronucleatum. J Histochem Cytochem. 1989 Feb;37(2):195–202. doi: 10.1177/37.2.2911005. [DOI] [PubMed] [Google Scholar]
  7. Anderson R. G., Orci L. A view of acidic intracellular compartments. J Cell Biol. 1988 Mar;106(3):539–543. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Aridor M., Bannykh S. I., Rowe T., Balch W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol. 1995 Nov;131(4):875–893. doi: 10.1083/jcb.131.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Babia T., Kok J. W., van der Haar M., Kalicharan R., Hoekstra D. Transport of biosynthetic sphingolipids from Golgi to plasma membrane in HT29 cells: involvement of different carrier vesicle populations. Eur J Cell Biol. 1994 Apr;63(2):172–181. [PubMed] [Google Scholar]
  10. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  11. Balch W. E., Farquhar M. G. Beyond bulk flow. Trends Cell Biol. 1995 Jan;5(1):16–19. doi: 10.1016/s0962-8924(00)88928-x. [DOI] [PubMed] [Google Scholar]
  12. Balshüsemann D., Jaenicke L. The oligosaccharides of the glycoprotein pheromone of Volvox carteri f. nagariensis Iyengar (Chlorophyceae). Eur J Biochem. 1990 Aug 28;192(1):231–237. doi: 10.1111/j.1432-1033.1990.tb19220.x. [DOI] [PubMed] [Google Scholar]
  13. Banfield D. K., Lewis M. J., Pelham H. R. A SNARE-like protein required for traffic through the Golgi complex. Nature. 1995 Jun 29;375(6534):806–809. doi: 10.1038/375806a0. [DOI] [PubMed] [Google Scholar]
  14. Bangs J. D., Andrews N. W., Hart G. W., Englund P. T. Posttranslational modification and intracellular transport of a trypanosome variant surface glycoprotein. J Cell Biol. 1986 Jul;103(1):255–263. doi: 10.1083/jcb.103.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bangs J. D., Hereld D., Krakow J. L., Hart G. W., Englund P. T. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc Natl Acad Sci U S A. 1985 May;82(10):3207–3211. doi: 10.1073/pnas.82.10.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bangs J. D., Uyetake L., Brickman M. J., Balber A. E., Boothroyd J. C. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 1993 Aug;105(Pt 4):1101–1113. doi: 10.1242/jcs.105.4.1101. [DOI] [PubMed] [Google Scholar]
  17. Banting G., Benting J., Lingelbach K. A minimalist view of the secretory pathway in Plasmodium falciparum. Trends Cell Biol. 1995 Sep;5(9):340–343. doi: 10.1016/s0962-8924(00)89060-1. [DOI] [PubMed] [Google Scholar]
  18. Bar-Peled M., Conceicao AdS., Frigerio L., Raikhel N. V. Expression and Regulation of aERD2, a Gene Encoding the KDEL Receptor Homolog in Plants, and Other Genes Encoding Proteins Involved in ER-Golgi Vesicular Trafficking. Plant Cell. 1995 Jun;7(6):667–676. doi: 10.1105/tpc.7.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Becker B., Bölinger B., Melkonian M. Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol. 1995 Aug;5(8):305–307. doi: 10.1016/s0962-8924(00)89047-9. [DOI] [PubMed] [Google Scholar]
  20. Becker D., Melkonian M. N-linked glycoproteins associated with flagellar scales in a flagellate green alga: characterization of interactions. Eur J Cell Biol. 1992 Feb;57(1):109–116. [PubMed] [Google Scholar]
  21. Beckers C. J., Balch W. E. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol. 1989 Apr;108(4):1245–1256. doi: 10.1083/jcb.108.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Beckers C. J., Block M. R., Glick B. S., Rothman J. E., Balch W. E. Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature. 1989 Jun 1;339(6223):397–398. doi: 10.1038/339397a0. [DOI] [PubMed] [Google Scholar]
  23. Beh C. T., Rose M. D. Two redundant systems maintain levels of resident proteins within the yeast endoplasmic reticulum. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9820–9823. doi: 10.1073/pnas.92.21.9820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bennett M. K. SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol. 1995 Aug;7(4):581–586. doi: 10.1016/0955-0674(95)80016-6. [DOI] [PubMed] [Google Scholar]
  25. Beranger F., Paterson H., Powers S., de Gunzburg J., Hancock J. F. The effector domain of Rab6, plus a highly hydrophobic C terminus, is required for Golgi apparatus localization. Mol Cell Biol. 1994 Jan;14(1):744–758. doi: 10.1128/mcb.14.1.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bockman D. E., Winborn W. B. Electron microscopic localization of exogenous ferritin within vacuoles of Giardia muris. J Protozool. 1968 Feb;15(1):26–30. doi: 10.1111/j.1550-7408.1968.tb02085.x. [DOI] [PubMed] [Google Scholar]
  27. Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
  28. Boman A. L., Kahn R. A. Arf proteins: the membrane traffic police? Trends Biochem Sci. 1995 Apr;20(4):147–150. doi: 10.1016/s0968-0004(00)88991-4. [DOI] [PubMed] [Google Scholar]
  29. Boose J. A., Henderson E. J. Conditional intercellular cohesion in a Dictyostelium discoideum mutant which is temperature sensitive for correct processing of asparagine-linked oligosaccharides. Glycobiology. 1991 Jun;1(3):295–305. doi: 10.1093/glycob/1.3.295. [DOI] [PubMed] [Google Scholar]
  30. Boothroyd J. C., Paynter C. A., Cross G. A., Bernards A., Borst P. Variant surface glycoproteins of Trypanosoma brucei are synthesised with cleavable hydrophobic sequences at the carboxy and amino termini. Nucleic Acids Res. 1981 Sep 25;9(18):4735–4743. doi: 10.1093/nar/9.18.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
  32. Brickman M. J., Balber A. E. Transport of a lysosomal membrane glycoprotein from the Golgi to endosomes and lysosomes via the cell surface in African trypanosomes. J Cell Sci. 1994 Nov;107(Pt 11):3191–3200. doi: 10.1242/jcs.107.11.3191. [DOI] [PubMed] [Google Scholar]
  33. Brown W. J., DeWald D. B., Emr S. D., Plutner H., Balch W. E. Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J Cell Biol. 1995 Aug;130(4):781–796. doi: 10.1083/jcb.130.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Browning D. D., Poludnikiewicz M. B., Proteau G. A., O'Day D. H. The regulation of GTP-binding proteins during fertilization and zygote differentiation in Dictyostelium discoideum. Exp Cell Res. 1993 Apr;205(2):240–245. doi: 10.1006/excr.1993.1082. [DOI] [PubMed] [Google Scholar]
  35. Busch G. R., Satir B. H. The secretory vesicle in living Paramecium is acidic. J Cell Sci. 1989 Feb;92(Pt 2):197–203. doi: 10.1242/jcs.92.2.197. [DOI] [PubMed] [Google Scholar]
  36. Bush J. M., Ebert D. L., Cardelli J. A. Alterations to N-linked oligosaccharides which affect intracellular transport rates and regulated secretion but not sorting of lysosomal acid phosphatase in Dictyostelium discoideum. Arch Biochem Biophys. 1990 Nov 15;283(1):158–166. doi: 10.1016/0003-9861(90)90626-a. [DOI] [PubMed] [Google Scholar]
  37. Bush J., Franek K., Daniel J., Spiegelman G. B., Weeks G., Cardelli J. Cloning and characterization of five novel Dictyostelium discoideum rab-related genes. Gene. 1993 Dec 22;136(1-2):55–60. doi: 10.1016/0378-1119(93)90447-b. [DOI] [PubMed] [Google Scholar]
  38. Bush J., Nolta K., Rodriguez-Paris J., Kaufmann N., O'Halloran T., Ruscetti T., Temesvari L., Steck T., Cardelli J. A Rab4-like GTPase in Dictyostelium discoideum colocalizes with V-H(+)-ATPases in reticular membranes of the contractile vacuole complex and in lysosomes. J Cell Sci. 1994 Oct;107(Pt 10):2801–2812. doi: 10.1242/jcs.107.10.2801. [DOI] [PubMed] [Google Scholar]
  39. Cardelli J. A., Bush J. M., Ebert D., Freeze H. H. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum. J Biol Chem. 1990 May 25;265(15):8847–8853. [PubMed] [Google Scholar]
  40. Cardelli J. A., Richardson J., Miears D. Role of acidic intracellular compartments in the biosynthesis of Dictyostelium lysosomal enzymes. The weak bases ammonium chloride and chloroquine differentially affect proteolytic processing and sorting. J Biol Chem. 1989 Feb 25;264(6):3454–3463. [PubMed] [Google Scholar]
  41. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Chan R. L., Keller M., Canaday J., Weil J. H., Imbault P. Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J. 1990 Feb;9(2):333–338. doi: 10.1002/j.1460-2075.1990.tb08115.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Chavrier P., Gorvel J. P., Stelzer E., Simons K., Gruenberg J., Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature. 1991 Oct 24;353(6346):769–772. doi: 10.1038/353769a0. [DOI] [PubMed] [Google Scholar]
  44. Chavrier P., Parton R. G., Hauri H. P., Simons K., Zerial M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell. 1990 Jul 27;62(2):317–329. doi: 10.1016/0092-8674(90)90369-p. [DOI] [PubMed] [Google Scholar]
  45. Cladaras M. H., Kaplan A. Maturation of alpha-mannosidase in Dictyostelium discoideum. Acquisition of endoglycosidase H resistance and sulfate. J Biol Chem. 1984 Nov 25;259(22):14165–14169. [PubMed] [Google Scholar]
  46. Clary D. O., Griff I. C., Rothman J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell. 1990 May 18;61(4):709–721. doi: 10.1016/0092-8674(90)90482-t. [DOI] [PubMed] [Google Scholar]
  47. Clayton C., Häusler T., Blattner J. Protein trafficking in kinetoplastid protozoa. Microbiol Rev. 1995 Sep;59(3):325–344. doi: 10.1128/mr.59.3.325-344.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Cole N. B., Lippincott-Schwartz J. Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol. 1995 Feb;7(1):55–64. doi: 10.1016/0955-0674(95)80045-x. [DOI] [PubMed] [Google Scholar]
  49. Conibear E., Stevens T. H. Vacuolar biogenesis in yeast: sorting out the sorting proteins. Cell. 1995 Nov 17;83(4):513–516. doi: 10.1016/0092-8674(95)90088-8. [DOI] [PubMed] [Google Scholar]
  50. Coukell M. B., Cameron A. M., Adames N. R. Involvement of intracellular calcium in protein secretion in Dictyostelium discoideum. J Cell Sci. 1992 Oct;103(Pt 2):371–380. doi: 10.1242/jcs.103.2.371. [DOI] [PubMed] [Google Scholar]
  51. Crary J. L., Haldar K. Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of Plasmodium falciparum. Mol Biochem Parasitol. 1992 Jul;53(1-2):185–192. doi: 10.1016/0166-6851(92)90020-k. [DOI] [PubMed] [Google Scholar]
  52. Cross G. A. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell. 1987 Jan 30;48(2):179–181. doi: 10.1016/0092-8674(87)90419-3. [DOI] [PubMed] [Google Scholar]
  53. Cross G. A. Structure of the variant glycoproteins and surface coat of Trypanosoma brucei. Philos Trans R Soc Lond B Biol Sci. 1984 Nov 13;307(1131):3–12. doi: 10.1098/rstb.1984.0104. [DOI] [PubMed] [Google Scholar]
  54. Dahms N. M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989 Jul 25;264(21):12115–12118. [PubMed] [Google Scholar]
  55. Das A., Elmendorf H. G., Li W. I., Haldar K. Biosynthesis, export and processing of a 45 kDa protein detected in membrane clefts of erythrocytes infected with Plasmodium falciparum. Biochem J. 1994 Sep 1;302(Pt 2):487–496. doi: 10.1042/bj3020487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Davidson H. W., McGowan C. H., Balch W. E. Evidence for the regulation of exocytic transport by protein phosphorylation. J Cell Biol. 1992 Mar;116(6):1343–1355. doi: 10.1083/jcb.116.6.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Davidson H. W. Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes. J Cell Biol. 1995 Aug;130(4):797–805. doi: 10.1083/jcb.130.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Davis S. J. Oligosaccharide heterogeneity of glycoproteins sulfated during the vegetative growth of Dictyostelium discoideum. J Cell Biochem. 1988 Oct;38(2):77–86. doi: 10.1002/jcb.240380202. [DOI] [PubMed] [Google Scholar]
  59. De Matteis M. A., Santini G., Kahn R. A., Di Tullio G., Luini A. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature. 1993 Aug 26;364(6440):818–821. doi: 10.1038/364818a0. [DOI] [PubMed] [Google Scholar]
  60. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Denning G. M., Fulton A. B. Purification and characterization of clathrin-coated vesicles from Chlamydomonas. J Protozool. 1989 Jul-Aug;36(4):334–340. doi: 10.1111/j.1550-7408.1989.tb05522.x. [DOI] [PubMed] [Google Scholar]
  62. Descoteaux A., Luo Y., Turco S. J., Beverley S. M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995 Sep 29;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
  63. Dieckmann-Schuppert A., Bender S., Odenthal-Schnittler M., Bause E., Schwarz R. T. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem. 1992 Apr 15;205(2):815–825. doi: 10.1111/j.1432-1033.1992.tb16846.x. [DOI] [PubMed] [Google Scholar]
  64. Dietmaier W., Fabry S., Huber H., Schmitt R. Analysis of a family of ypt genes and their products from Chlamydomonas reinhardtii. Gene. 1995 May 26;158(1):41–50. doi: 10.1016/0378-1119(95)00052-8. [DOI] [PubMed] [Google Scholar]
  65. Domozych D. S. The Golgi apparatus and membrane trafficking in green algae. Int Rev Cytol. 1991;131:213–253. doi: 10.1016/s0074-7696(08)62020-3. [DOI] [PubMed] [Google Scholar]
  66. Donaldson J. G., Finazzi D., Klausner R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature. 1992 Nov 26;360(6402):350–352. doi: 10.1038/360350a0. [DOI] [PubMed] [Google Scholar]
  67. Donaldson J. G., Kahn R. A., Lippincott-Schwartz J., Klausner R. D. Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science. 1991 Nov 22;254(5035):1197–1199. doi: 10.1126/science.1957170. [DOI] [PubMed] [Google Scholar]
  68. Duden R., Griffiths G., Frank R., Argos P., Kreis T. E. Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell. 1991 Feb 8;64(3):649–665. doi: 10.1016/0092-8674(91)90248-w. [DOI] [PubMed] [Google Scholar]
  69. Dunphy W. G., Brands R., Rothman J. E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985 Feb;40(2):463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  70. Duszenko M., Ivanov I. E., Ferguson M. A., Plesken H., Cross G. A. Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei. J Cell Biol. 1988 Jan;106(1):77–86. doi: 10.1083/jcb.106.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Ebert D. L., Bush J. M., Dimond R. L., Cardelli J. A. Biogenesis of lysosomal enzymes in the alpha-glucosidase II-deficient modA mutant of Dictyostelium discoideum: retention of alpha-1,3-linked glucose on N-linked oligosaccharides delays intracellular transport but does not alter sorting of alpha-mannosidase or beta-glucosidase. Arch Biochem Biophys. 1989 Sep;273(2):479–490. doi: 10.1016/0003-9861(89)90507-9. [DOI] [PubMed] [Google Scholar]
  72. Elazar Z., Mayer T., Rothman J. E. Removal of Rab GTP-binding proteins from Golgi membranes by GDP dissociation inhibitor inhibits inter-cisternal transport in the Golgi stacks. J Biol Chem. 1994 Jan 14;269(2):794–797. [PubMed] [Google Scholar]
  73. Elmendorf H. G., Bangs J. D., Haldar K. Synthesis and secretion of proteins by released malarial parasites. Mol Biochem Parasitol. 1992 Jun;52(2):215–230. doi: 10.1016/0166-6851(92)90054-n. [DOI] [PubMed] [Google Scholar]
  74. Elmendorf H. G., Haldar K. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO J. 1993 Dec;12(12):4763–4773. doi: 10.1002/j.1460-2075.1993.tb06165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Elmendorf H. G., Haldar K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J Cell Biol. 1994 Feb;124(4):449–462. doi: 10.1083/jcb.124.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Elmendorf H. G., Haldar K. Secretory transport in Plasmodium. Parasitol Today. 1993 Mar;9(3):98–102. doi: 10.1016/0169-4758(93)90216-3. [DOI] [PubMed] [Google Scholar]
  77. Esteve J. C. L'appareil de Golgi des ciliés. Ultrastructure, particulièrement chez Paramecium. J Protozool. 1972 Nov;19(4):609–618. doi: 10.1111/j.1550-7408.1972.tb03543.x. [DOI] [PubMed] [Google Scholar]
  78. Fabry S., Jacobsen A., Huber H., Palme K., Schmitt R. Structure, expression, and phylogenetic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri. Curr Genet. 1993 Sep;24(3):229–240. doi: 10.1007/BF00351797. [DOI] [PubMed] [Google Scholar]
  79. Fabry S., Nass N., Huber H., Palme K., Jaenicke L., Schmitt R. The yptV1 gene encodes a small G-protein in the green alga Volvox carteri: gene structure and properties of the gene product. Gene. 1992 Sep 10;118(2):153–162. doi: 10.1016/0378-1119(92)90184-q. [DOI] [PubMed] [Google Scholar]
  80. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Feely D. E., Dyer J. K. Localization of acid phosphatase activity in Giardia lamblia and Giardia muris trophozoites. J Protozool. 1987 Feb;34(1):80–83. doi: 10.1111/j.1550-7408.1987.tb03137.x. [DOI] [PubMed] [Google Scholar]
  82. Ferguson M. A., Duszenko M., Lamont G. S., Overath P., Cross G. A. Biosynthesis of Trypanosoma brucei variant surface glycoproteins. N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem. 1986 Jan 5;261(1):356–362. [PubMed] [Google Scholar]
  83. Ferro-Novick S., Jahn R. Vesicle fusion from yeast to man. Nature. 1994 Jul 21;370(6486):191–193. doi: 10.1038/370191a0. [DOI] [PubMed] [Google Scholar]
  84. Fraga D., Hinrichsen R. D. The identification of a complex family of low-molecular-weight GTP-binding protein homologues from Paramecium tetraurelia by PCR cloning. Gene. 1994 Sep 15;147(1):145–148. doi: 10.1016/0378-1119(94)90055-8. [DOI] [PubMed] [Google Scholar]
  85. Freeze H. H. Mannose 6-sulfate is present in the N-linked oligosaccharides of lysosomal enzymes of Dictyostelium. Arch Biochem Biophys. 1985 Dec;243(2):690–693. doi: 10.1016/0003-9861(85)90547-8. [DOI] [PubMed] [Google Scholar]
  86. Freeze H. H. Modifications of lysosomal enzymes in Dictyostelium discoideum. Mol Cell Biochem. 1986 Nov-Dec;72(1-2):47–65. doi: 10.1007/BF00230635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Freeze H. H., Wolgast D. Biosynthesis of methylphosphomannosyl residues in the oligosaccharides of Dictyostelium discoideum glycoproteins. Evidence that the methyl group is derived from methionine. J Biol Chem. 1986 Jan 5;261(1):135–141. [PubMed] [Google Scholar]
  88. Friend D. S. The fine structure of Giardia muris. J Cell Biol. 1966 May;29(2):317–332. doi: 10.1083/jcb.29.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Funk V. A., Jardim A., Olafson R. W. An investigation into the significance of the N-linked oligosaccharides of Leishmania gp63. Mol Biochem Parasitol. 1994 Jan;63(1):23–35. doi: 10.1016/0166-6851(94)90005-1. [DOI] [PubMed] [Google Scholar]
  90. Gabel C. A., Costello C. E., Reinhold V. N., Kurz L., Kornfeld S. Identification of methylphosphomannosyl residues as components of the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. J Biol Chem. 1984 Nov 25;259(22):13762–13769. [PubMed] [Google Scholar]
  91. Gaut J. R., Hendershot L. M. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol. 1993 Aug;5(4):589–595. doi: 10.1016/0955-0674(93)90127-c. [DOI] [PubMed] [Google Scholar]
  92. Gautier M. C., Garreau de Loubresse N., Madeddu L., Sperling L. Evidence for defects in membrane traffic in Paramecium secretory mutants unable to produce functional storage granules. J Cell Biol. 1994 Mar;124(6):893–902. doi: 10.1083/jcb.124.6.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
  94. Gilligan D. M., Satir B. H. Stimulation and inhibition of secretion in Paramecium: role of divalent cations. J Cell Biol. 1983 Jul;97(1):224–234. doi: 10.1083/jcb.97.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Gillin F. D., Hagblom P., Harwood J., Aley S. B., Reiner D. S., McCaffery M., So M., Guiney D. G. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4463–4467. doi: 10.1073/pnas.87.12.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Gillin F. D., Reiner D. S., Gault M. J., Douglas H., Das S., Wunderlich A., Sauch J. F. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science. 1987 Feb 27;235(4792):1040–1043. doi: 10.1126/science.3547646. [DOI] [PubMed] [Google Scholar]
  97. Gleeson P. A., Teasdale R. D., Burke J. Targeting of proteins to the Golgi apparatus. Glycoconj J. 1994 Oct;11(5):381–394. doi: 10.1007/BF00731273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Grab D. J., Ito S., Kara U. A., Rovis L. Glycosyltransferase activities in Golgi complex and endoplasmic reticulum fractions isolated from African trypanosomes. J Cell Biol. 1984 Aug;99(2):569–577. doi: 10.1083/jcb.99.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Graham T. R., Emr S. D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J Cell Biol. 1991 Jul;114(2):207–218. doi: 10.1083/jcb.114.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Griffiths G., Doms R. W., Mayhew T., Lucocq J. The bulk-flow hypothesis: not quite the end. Trends Cell Biol. 1995 Jan;5(1):9–13. doi: 10.1016/s0962-8924(00)88926-6. [DOI] [PubMed] [Google Scholar]
  101. Gruenberg J., Kreis T. E. Membranes and sorting. Curr Opin Cell Biol. 1995 Aug;7(4):519–522. doi: 10.1016/0955-0674(95)80008-5. [DOI] [PubMed] [Google Scholar]
  102. Grunow A., Becker B., Melkonian M. Isolation and characterization of the Golgi apparatus of a flagellate scaly green alga. Eur J Cell Biol. 1993 Jun;61(1):10–20. [PubMed] [Google Scholar]
  103. Gumpel N. J., Purton S. Playing tag with Chlamydomonas. Trends Cell Biol. 1994 Aug;4(8):299–301. doi: 10.1016/0962-8924(94)90222-4. [DOI] [PubMed] [Google Scholar]
  104. Gupta R. S., Aitken K., Falah M., Singh B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2895–2899. doi: 10.1073/pnas.91.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Haizel T., Merkle T., Turck F., Nagy F. Characterization of membrane-bound small GTP-binding proteins from Nicotiana tabacum. Plant Physiol. 1995 May;108(1):59–67. doi: 10.1104/pp.108.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hausmann K. Extrusive organelles in protists. Int Rev Cytol. 1978;52:197–276. doi: 10.1016/s0074-7696(08)60757-3. [DOI] [PubMed] [Google Scholar]
  107. Helms J. B., Palmer D. J., Rothman J. E. Two distinct populations of ARF bound to Golgi membranes. J Cell Biol. 1993 May;121(4):751–760. doi: 10.1083/jcb.121.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Helms J. B., Rothman J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature. 1992 Nov 26;360(6402):352–354. doi: 10.1038/360352a0. [DOI] [PubMed] [Google Scholar]
  109. Hinterberg K., Scherf A., Gysin J., Toyoshima T., Aikawa M., Mazie J. C., da Silva L. P., Mattei D. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. Exp Parasitol. 1994 Nov;79(3):279–291. doi: 10.1006/expr.1994.1091. [DOI] [PubMed] [Google Scholar]
  110. Hoe M. H., Slusarewicz P., Misteli T., Watson R., Warren G. Evidence for recycling of the resident medial/trans Golgi enzyme, N-acetylglucosaminyltransferase I, in ldlD cells. J Biol Chem. 1995 Oct 20;270(42):25057–25063. doi: 10.1074/jbc.270.42.25057. [DOI] [PubMed] [Google Scholar]
  111. Hohmann H. P., Bozzaro S., Yoshida M., Merkl R., Gerisch G. Two-step glycosylation of the contact site A protein of Dictyostelium discoideum and transport of an incompletely glycosylated form to the cell surface. J Biol Chem. 1987 Dec 5;262(34):16618–16624. [PubMed] [Google Scholar]
  112. Horazdovsky B. F., DeWald D. B., Emr S. D. Protein transport to the yeast vacuole. Curr Opin Cell Biol. 1995 Aug;7(4):544–551. doi: 10.1016/0955-0674(95)80012-3. [DOI] [PubMed] [Google Scholar]
  113. Hummel R., Nørgaard P., Andreasen P. H., Neve S., Skjødt K., Tornehave D., Kristiansen K. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles. J Mol Biol. 1992 Dec 5;228(3):850–861. doi: 10.1016/0022-2836(92)90869-l. [DOI] [PubMed] [Google Scholar]
  114. Hünseler P., Scheidgen-Kleyboldt G., Tiedtke A. Isolation and characterization of a mutant of Tetrahymena thermophila blocked in secretion of lysosomal enzymes. J Cell Sci. 1987 Aug;88(Pt 1):47–55. doi: 10.1242/jcs.88.1.47. [DOI] [PubMed] [Google Scholar]
  115. Hünseler P., Tiedtke A., von Figura K. Biosynthesis of secreted beta-hexosaminidase in Tetrahymena thermophila. A comparison of the wild type with a secretory mutant. Biochem J. 1988 Jun 15;252(3):837–842. doi: 10.1042/bj2520837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Ikonen E., Tagaya M., Ullrich O., Montecucco C., Simons K. Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell. 1995 May 19;81(4):571–580. doi: 10.1016/0092-8674(95)90078-0. [DOI] [PubMed] [Google Scholar]
  117. Ilg T., Overath P., Ferguson M. A., Rutherford T., Campbell D. G., McConville M. J. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem. 1994 Sep 30;269(39):24073–24081. [PubMed] [Google Scholar]
  118. Itin C., Kappeler F., Linstedt A. D., Hauri H. P. A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO J. 1995 May 15;14(10):2250–2256. doi: 10.1002/j.1460-2075.1995.tb07219.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Ivatt R. L., Das O. P., Henderson E. J., Robbins P. W. Glycoprotein biosynthesis in dictyostelium discoideum: developmental regulation of the protein-linked glycans. Cell. 1984 Sep;38(2):561–567. doi: 10.1016/0092-8674(84)90510-5. [DOI] [PubMed] [Google Scholar]
  120. Kahn R. A., Kern F. G., Clark J., Gelmann E. P., Rulka C. Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. J Biol Chem. 1991 Feb 5;266(4):2606–2614. [PubMed] [Google Scholar]
  121. Kane S., Raymond M. N., Dusanter-Fourt I., Houdebine L. M., Djiane J., Ollivier-Bousquet M. Endocytose de la prolactine dans la cellule épithéliale mammaire: effets des agents lysosomotropes, et des inhibiteurs de la transglutaminase. Eur J Cell Biol. 1983 May;30(2):244–253. [PubMed] [Google Scholar]
  122. Kaushal G. P., Elbein A. D. Glycoprotein processing enzymes of plants. Methods Enzymol. 1989;179:452–475. doi: 10.1016/0076-6879(89)79146-1. [DOI] [PubMed] [Google Scholar]
  123. Kiyosue T., Shinozaki K. Cloning of a carrot cDNA for a member of the family of ADP-ribosylation factors (ARFs) and characterization of the binding of nucleotides by its product after expression in E. coli. Plant Cell Physiol. 1995 Jul;36(5):849–856. doi: 10.1093/oxfordjournals.pcp.a078830. [DOI] [PubMed] [Google Scholar]
  124. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  125. Krijnse-Locker J., Ericsson M., Rottier P. J., Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994 Jan;124(1-2):55–70. doi: 10.1083/jcb.124.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Ktistakis N. T., Brown H. A., Sternweis P. C., Roth M. G. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4952–4956. doi: 10.1073/pnas.92.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Kuliawat R., Arvan P. Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta-cells. J Cell Biol. 1994 Jul;126(1):77–86. doi: 10.1083/jcb.126.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Kumar N., Koski G., Harada M., Aikawa M., Zheng H. Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol. 1991 Sep;48(1):47–58. doi: 10.1016/0166-6851(91)90163-z. [DOI] [PubMed] [Google Scholar]
  129. Kumar N., Zheng H. Nucleotide sequence of a Plasmodium falciparum stress protein with similarity to mammalian 78-kDa glucose-regulated protein. Mol Biochem Parasitol. 1992 Dec;56(2):353–356. doi: 10.1016/0166-6851(92)90187-o. [DOI] [PubMed] [Google Scholar]
  130. Kurz S., Tiedtke A. The Golgi apparatus of Tetrahymena thermophila. J Eukaryot Microbiol. 1993 Jan-Feb;40(1):10–13. doi: 10.1111/j.1550-7408.1993.tb04874.x. [DOI] [PubMed] [Google Scholar]
  131. Labriola C., Cazzulo J. J., Parodi A. J. Retention of glucose units added by the UDP-GLC:glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum. J Cell Biol. 1995 Aug;130(4):771–779. doi: 10.1083/jcb.130.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Lacoste C. H., Freeze H. H., Jones J. A., Kaplan A. Characteristics of the sulfation of N-linked oligosaccharides in vesicles from Dictyostelium discoideum: in vitro sulfation of lysosomal enzymes. Arch Biochem Biophys. 1989 Sep;273(2):505–515. doi: 10.1016/0003-9861(89)90510-9. [DOI] [PubMed] [Google Scholar]
  133. Ladinsky M. S., Kremer J. R., Furcinitti P. S., McIntosh J. R., Howell K. E. HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J Cell Biol. 1994 Oct;127(1):29–38. doi: 10.1083/jcb.127.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Langreth S. G., Jensen J. B., Reese R. T., Trager W. Fine structure of human malaria in vitro. J Protozool. 1978 Nov;25(4):443–452. doi: 10.1111/j.1550-7408.1978.tb04167.x. [DOI] [PubMed] [Google Scholar]
  135. Latterich M., Fröhlich K. U., Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell. 1995 Sep 22;82(6):885–893. doi: 10.1016/0092-8674(95)90268-6. [DOI] [PubMed] [Google Scholar]
  136. Lebas M., Axelos M. A cDNA encoding a new GTP-binding protein of the ADP-ribosylation factor family from Arabidopsis. Plant Physiol. 1994 Oct;106(2):809–810. doi: 10.1104/pp.106.2.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Lee F. J., Moss J., Vaughan M. Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J Biol Chem. 1992 Dec 5;267(34):24441–24445. [PubMed] [Google Scholar]
  138. Lenhard J. M., Siegel A., Free S. J. Developing Dictyostelium cells contain the lysosomal enzyme alpha-mannosidase in a secretory granule. J Cell Biol. 1989 Dec;109(6 Pt 1):2761–2769. doi: 10.1083/jcb.109.6.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Letourneur F., Gaynor E. C., Hennecke S., Démollière C., Duden R., Emr S. D., Riezman H., Cosson P. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell. 1994 Dec 30;79(7):1199–1207. doi: 10.1016/0092-8674(94)90011-6. [DOI] [PubMed] [Google Scholar]
  140. Li W., Keller G. A., Haldar K. Recognition of a 170 kD protein in mammalian Golgi complexes by an antibody against malarial intraerythrocytic lamellae. Tissue Cell. 1995 Aug;27(4):355–367. doi: 10.1016/S0040-8166(95)80057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Lindmark D. G. Giardia lamblia: localization of hydrolase activities in lysosome-like organelles of trophozoites. Exp Parasitol. 1988 Feb;65(1):141–147. doi: 10.1016/0014-4894(88)90116-6. [DOI] [PubMed] [Google Scholar]
  142. Liu X., Chang K. P. The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection. Mol Cell Biol. 1992 Sep;12(9):4112–4122. doi: 10.1128/mcb.12.9.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Lobel P., Fujimoto K., Ye R. D., Griffiths G., Kornfeld S. Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell. 1989 Jun 2;57(5):787–796. doi: 10.1016/0092-8674(89)90793-9. [DOI] [PubMed] [Google Scholar]
  144. Luján H. D., Marotta A., Mowatt M. R., Sciaky N., Lippincott-Schwartz J., Nash T. E. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem. 1995 Mar 3;270(9):4612–4618. doi: 10.1074/jbc.270.9.4612. [DOI] [PubMed] [Google Scholar]
  145. Lumpert C. J., Glas-Albrecht R., Eisenmann E., Plattner H. Secretory organelles of Paramecium cells (trichocysts) are not remarkably acidic compartments. J Histochem Cytochem. 1992 Jan;40(1):153–160. doi: 10.1177/40.1.1370309. [DOI] [PubMed] [Google Scholar]
  146. Lussier M., Sdicu A. M., Ketela T., Bussey H. Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1,2-mannosyltransferase to a medial-Golgi compartment. J Cell Biol. 1995 Nov;131(4):913–927. doi: 10.1083/jcb.131.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Luzio J. P., Banting G. Eukaryotic membrane traffic: retrieval and retention mechanisms to achieve organelle residence. Trends Biochem Sci. 1993 Oct;18(10):395–398. doi: 10.1016/0968-0004(93)90097-7. [DOI] [PubMed] [Google Scholar]
  148. Machamer C. E. Golgi retention signals: do membranes hold the key? Trends Cell Biol. 1991 Dec;1(6):141–144. doi: 10.1016/0962-8924(91)90001-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Madeddu L., Gautier M. C., Vayssié L., Houari A., Sperling L. A large multigene family codes for the polypeptides of the crystalline trichocyst matrix in Paramecium. Mol Biol Cell. 1995 Jun;6(6):649–659. doi: 10.1091/mbc.6.6.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Malhotra V., Orci L., Glick B. S., Block M. R., Rothman J. E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell. 1988 Jul 15;54(2):221–227. doi: 10.1016/0092-8674(88)90554-5. [DOI] [PubMed] [Google Scholar]
  151. Mallabiabarrena A., Jiménez M. A., Rico M., Alarcón B. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. EMBO J. 1995 May 15;14(10):2257–2268. doi: 10.1002/j.1460-2075.1995.tb07220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Manning P., Erlandsen S. L., Jarroll E. L. Carbohydrate and amino acid analyses of Giardia muris cysts. J Protozool. 1992 Mar-Apr;39(2):290–296. doi: 10.1111/j.1550-7408.1992.tb01317.x. [DOI] [PubMed] [Google Scholar]
  153. Manton I. Observations on scale production in Pyramimonas amylifera Conrad. J Cell Sci. 1966 Dec;1(4):429–438. doi: 10.1242/jcs.1.4.429. [DOI] [PubMed] [Google Scholar]
  154. McCaffery J. M., Faubert G. M., Gillin F. D. Giardia lamblia: traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol. 1994 Nov;79(3):236–249. doi: 10.1006/expr.1994.1087. [DOI] [PubMed] [Google Scholar]
  155. McCaffery J. M., Gillin F. D. Giardia lamblia: ultrastructural basis of protein transport during growth and encystation. Exp Parasitol. 1994 Nov;79(3):220–235. doi: 10.1006/expr.1994.1086. [DOI] [PubMed] [Google Scholar]
  156. Meindl U. Micrasterias cells as a model system for research on morphogenesis. Microbiol Rev. 1993 Jun;57(2):415–433. doi: 10.1128/mr.57.2.415-433.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Melançon P., Glick B. S., Malhotra V., Weidman P. J., Serafini T., Gleason M. L., Orci L., Rothman J. E. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Cell. 1987 Dec 24;51(6):1053–1062. doi: 10.1016/0092-8674(87)90591-5. [DOI] [PubMed] [Google Scholar]
  158. Melkonian M., Becker B., Becker D. Scale formation in algae. J Electron Microsc Tech. 1991 Feb;17(2):165–178. doi: 10.1002/jemt.1060170205. [DOI] [PubMed] [Google Scholar]
  159. Moestrup O., Walne P. L. Studies on scale morphogenesis in the Golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). J Cell Sci. 1979 Apr;36:437–459. doi: 10.1242/jcs.36.1.437. [DOI] [PubMed] [Google Scholar]
  160. Mollenhauer H. H., Morré D. J., Rowe L. D. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta. 1990 May 7;1031(2):225–246. doi: 10.1016/0304-4157(90)90008-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Momayezi M., Habermann A. W., Sokolova J. J., Kissmehl R., Plattner H. Ultrastructural and antigenic preservation of a delicate structure by cryopreparation: identification and immunogold localization during biogenesis of a secretory component (membrane-matrix connection) in Paramecium trichocysts. J Histochem Cytochem. 1993 Nov;41(11):1669–1677. doi: 10.1177/41.11.8409374. [DOI] [PubMed] [Google Scholar]
  162. Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 1995 Oct 2;14(19):4695–4704. doi: 10.1002/j.1460-2075.1995.tb00151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Murtagh J. J., Jr, Mowatt M. R., Lee C. M., Lee F. J., Mishima K., Nash T. E., Moss J., Vaughan M. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J Biol Chem. 1992 May 15;267(14):9654–9662. [PubMed] [Google Scholar]
  164. NATH V., DUTTA G. P. Cytochemistry of protozoa, with particular reference to the Golgi apparatus and the mitochondria. Int Rev Cytol. 1962;13:323–355. doi: 10.1016/s0074-7696(08)60286-7. [DOI] [PubMed] [Google Scholar]
  165. Nakamura K., Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol. 1993 Jan;101(1):1–5. doi: 10.1104/pp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Ng K., Handman E., Bacic A. Biosynthesis of lipophosphoglycan from Leishmania major: characterization of (beta 1-3)-galactosyltransferase(s). Glycobiology. 1994 Dec;4(6):845–853. doi: 10.1093/glycob/4.6.845. [DOI] [PubMed] [Google Scholar]
  167. Nilsson T., Hoe M. H., Slusarewicz P., Rabouille C., Watson R., Hunte F., Watzele G., Berger E. G., Warren G. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 1994 Feb 1;13(3):562–574. doi: 10.1002/j.1460-2075.1994.tb06294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Nilsson T., Pypaert M., Hoe M. H., Slusarewicz P., Berger E. G., Warren G. Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J Cell Biol. 1993 Jan;120(1):5–13. doi: 10.1083/jcb.120.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Nilsson T., Slusarewicz P., Hoe M. H., Warren G. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett. 1993 Sep 6;330(1):1–4. doi: 10.1016/0014-5793(93)80906-b. [DOI] [PubMed] [Google Scholar]
  170. Novick P., Brennwald P. Friends and family: the role of the Rab GTPases in vesicular traffic. Cell. 1993 Nov 19;75(4):597–601. doi: 10.1016/0092-8674(93)90478-9. [DOI] [PubMed] [Google Scholar]
  171. O'Halloran T. J., Anderson R. G. Characterization of the clathrin heavy chain from Dictyostelium discoideum. DNA Cell Biol. 1992 May;11(4):321–330. doi: 10.1089/dna.1992.11.321. [DOI] [PubMed] [Google Scholar]
  172. Ogun S. A., Holder A. A. Plasmodium yoelii: brefeldin A-sensitive processing of proteins targeted to the rhoptries. Exp Parasitol. 1994 Nov;79(3):270–278. doi: 10.1006/expr.1994.1090. [DOI] [PubMed] [Google Scholar]
  173. Ohashi M., Jan de Vries K., Frank R., Snoek G., Bankaitis V., Wirtz K., Huttner W. B. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature. 1995 Oct 12;377(6549):544–547. doi: 10.1038/377544a0. [DOI] [PubMed] [Google Scholar]
  174. Ohno H., Stewart J., Fournier M. C., Bosshart H., Rhee I., Miyatake S., Saito T., Gallusser A., Kirchhausen T., Bonifacino J. S. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science. 1995 Sep 29;269(5232):1872–1875. doi: 10.1126/science.7569928. [DOI] [PubMed] [Google Scholar]
  175. Orci L., Palmer D. J., Ravazzola M., Perrelet A., Amherdt M., Rothman J. E. Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature. 1993 Apr 15;362(6421):648–652. doi: 10.1038/362648a0. [DOI] [PubMed] [Google Scholar]
  176. Orci L., Tagaya M., Amherdt M., Perrelet A., Donaldson J. G., Lippincott-Schwartz J., Klausner R. D., Rothman J. E. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell. 1991 Mar 22;64(6):1183–1195. doi: 10.1016/0092-8674(91)90273-2. [DOI] [PubMed] [Google Scholar]
  177. Orcl L., Palmer D. J., Amherdt M., Rothman J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature. 1993 Aug 19;364(6439):732–734. doi: 10.1038/364732a0. [DOI] [PubMed] [Google Scholar]
  178. Orias E., Flacks M., Satir B. H. Isolation and ultrastructural characterization of secretory mutants of Tetrahymena thermophila. J Cell Sci. 1983 Nov;64:49–67. doi: 10.1242/jcs.64.1.49. [DOI] [PubMed] [Google Scholar]
  179. Osafune T., Schiff J. A., Hase E. Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res. 1991 Apr;193(2):320–330. doi: 10.1016/0014-4827(91)90103-2. [DOI] [PubMed] [Google Scholar]
  180. Ossig R., Laufer W., Schmitt H. D., Gallwitz D. Functionality and specific membrane localization of transport GTPases carrying C-terminal membrane anchors of synaptobrevin-like proteins. EMBO J. 1995 Aug 1;14(15):3645–3653. doi: 10.1002/j.1460-2075.1995.tb00034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Padh H., Ha J., Lavasa M., Steck T. L. A post-lysosomal compartment in Dictyostelium discoideum. J Biol Chem. 1993 Mar 25;268(9):6742–6747. [PubMed] [Google Scholar]
  182. Parodi A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology. 1993 Jun;3(3):193–199. doi: 10.1093/glycob/3.3.193. [DOI] [PubMed] [Google Scholar]
  183. Pearse B. M., Robinson M. S. Clathrin, adaptors, and sorting. Annu Rev Cell Biol. 1990;6:151–171. doi: 10.1146/annurev.cb.06.110190.001055. [DOI] [PubMed] [Google Scholar]
  184. Pelham H. R. Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr Opin Cell Biol. 1995 Aug;7(4):530–535. doi: 10.1016/0955-0674(95)80010-7. [DOI] [PubMed] [Google Scholar]
  185. Peterson J. B. Small GTP-binding proteins associated with secretory vesicles of Paramecium. J Protozool. 1991 Sep-Oct;38(5):495–501. doi: 10.1111/j.1550-7408.1991.tb04823.x. [DOI] [PubMed] [Google Scholar]
  186. Pfeffer S. R. Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol. 1994 Aug;6(4):522–526. doi: 10.1016/0955-0674(94)90071-x. [DOI] [PubMed] [Google Scholar]
  187. Pingel S., Duszenko M. Identification of two distinct galactosyltransferase activities acting on the variant surface glycoprotein of Trypanosoma brucei. Biochem J. 1992 Apr 15;283(Pt 2):479–485. doi: 10.1042/bj2830479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Piper R. C., Xu X., Russell D. G., Little B. M., Landfear S. M. Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain. J Cell Biol. 1995 Feb;128(4):499–508. doi: 10.1083/jcb.128.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Plattner H., Lumpert C. J., Knoll G., Kissmehl R., Höhne B., Momayezi M., Glas-Albrecht R. Stimulus-secretion coupling in Paramecium cells. Eur J Cell Biol. 1991 Jun;55(1):3–16. [PubMed] [Google Scholar]
  190. Plattner H., Westphal C., Tiggemann R. Cytoskeleton-secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells. J Cell Biol. 1982 Feb;92(2):368–377. doi: 10.1083/jcb.92.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Pollack S. Mutations affecting the trichocysts in Paramecium aurelia. I. Morphology and description of the mutants. J Protozool. 1974 May;21(2):352–362. doi: 10.1111/j.1550-7408.1974.tb03669.x. [DOI] [PubMed] [Google Scholar]
  192. Pâquet M. R., Pfeffer S. R., Burczak J. D., Glick B. S., Rothman J. E. Components responsible for transport between successive Golgi cisternae are highly conserved in evolution. J Biol Chem. 1986 Apr 5;261(10):4367–4370. [PubMed] [Google Scholar]
  193. Rabouille C., Hui N., Hunte F., Kieckbusch R., Berger E. G., Warren G., Nilsson T. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci. 1995 Apr;108(Pt 4):1617–1627. doi: 10.1242/jcs.108.4.1617. [DOI] [PubMed] [Google Scholar]
  194. Rabouille C., Levine T. P., Peters J. M., Warren G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell. 1995 Sep 22;82(6):905–914. doi: 10.1016/0092-8674(95)90270-8. [DOI] [PubMed] [Google Scholar]
  195. Rambourg A., Clermont Y., Hermo L., Segretain D. Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat: an electron microscope stereoscopic study. Biol Cell. 1987;60(2):103–115. doi: 10.1111/j.1768-322x.1987.tb00550.x. [DOI] [PubMed] [Google Scholar]
  196. Rambourg A., Clermont Y., Képès F. Modulation of the Golgi apparatus in Saccharomyces cerevisiae sec7 mutants as seen by three-dimensional electron microscopy. Anat Rec. 1993 Dec;237(4):441–452. doi: 10.1002/ar.1092370402. [DOI] [PubMed] [Google Scholar]
  197. Rambourg A., Clermont Y., Ovtracht L., Képès F. Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: a comparative study. Anat Rec. 1995 Nov;243(3):283–293. doi: 10.1002/ar.1092430302. [DOI] [PubMed] [Google Scholar]
  198. Ray D. A., Gibor A. Tunicamycin-sensitive glycoproteins involved in the mating of Chlamydomonas reinhardi. Exp Cell Res. 1982 Oct;141(2):245–252. doi: 10.1016/0014-4827(82)90212-9. [DOI] [PubMed] [Google Scholar]
  199. Reiner D. S., McCaffery M., Gillin F. D. Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol. 1990 Oct;53(1):142–153. [PubMed] [Google Scholar]
  200. Richardson J. M., Woychik N. A., Ebert D. L., Dimond R. L., Cardelli J. A. Inhibition of early but not late proteolytic processing events leads to the missorting and oversecretion of precursor forms of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol. 1988 Dec;107(6 Pt 1):2097–2107. doi: 10.1083/jcb.107.6.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Riley G. R., West C. M., Henderson E. J. Cell differentiation in Dictyostelium discoideum controls assembly of protein-linked glycans. Glycobiology. 1993 Apr;3(2):165–177. doi: 10.1093/glycob/3.2.165. [DOI] [PubMed] [Google Scholar]
  202. Rodríguez-Rosales M. P., Herrin D. L., Thompson G. A. Identification of Low Molecular Mass GTP-Binding Proteins in Membranes of the Halotolerant Alga Dunaliella salina. Plant Physiol. 1992 Feb;98(2):446–451. doi: 10.1104/pp.98.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  206. Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  207. Rovis L., Dube S. Identification and characterisation of two N-acetylglucosaminyltransferases associated with Trypanosoma Brucei microsomes. Mol Biochem Parasitol. 1982 Mar;5(3):173–187. doi: 10.1016/0166-6851(82)90019-6. [DOI] [PubMed] [Google Scholar]
  208. Ruscetti T., Cardelli J. A., Niswonger M. L., O'Halloran T. J. Clathrin heavy chain functions in sorting and secretion of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol. 1994 Jul;126(2):343–352. doi: 10.1083/jcb.126.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Salama N. R., Schekman R. W. The role of coat proteins in the biosynthesis of secretory proteins. Curr Opin Cell Biol. 1995 Aug;7(4):536–543. doi: 10.1016/0955-0674(95)80011-5. [DOI] [PubMed] [Google Scholar]
  211. Satir B. H., Hamasaki T., Reichman M., Murtaugh T. J. Species distribution of a phosphoprotein (parafusin) involved in exocytosis. Proc Natl Acad Sci U S A. 1989 Feb;86(3):930–932. doi: 10.1073/pnas.86.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Sauer M. K., Kelly R. B. Conjugation rescue of exocytosis mutants in Tetrahymena thermophila indicates the presence of functional intermediates in the regulated secretory pathway. J Eukaryot Microbiol. 1995 Mar-Apr;42(2):173–183. doi: 10.1111/j.1550-7408.1995.tb01559.x. [DOI] [PubMed] [Google Scholar]
  213. Saxe S. A., Kimmel A. R. SAS1 and SAS2, GTP-binding protein genes in Dictyostelium discoideum with sequence similarities to essential genes in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2367–2378. doi: 10.1128/mcb.10.5.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Schekman R. Translocation gets a push. Cell. 1994 Sep 23;78(6):911–913. doi: 10.1016/0092-8674(94)90265-8. [DOI] [PubMed] [Google Scholar]
  215. Schröder S., Schimmöller F., Singer-Krüger B., Riezman H. The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J Cell Biol. 1995 Nov;131(4):895–912. doi: 10.1083/jcb.131.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Schwientek T., Lorenz C., Ernst J. F. Golgi localization in yeast is mediated by the membrane anchor region of rat liver sialyltransferase. J Biol Chem. 1995 Mar 10;270(10):5483–5489. doi: 10.1074/jbc.270.10.5483. [DOI] [PubMed] [Google Scholar]
  217. Serafini T., Orci L., Amherdt M., Brunner M., Kahn R. A., Rothman J. E. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell. 1991 Oct 18;67(2):239–253. doi: 10.1016/0092-8674(91)90176-y. [DOI] [PubMed] [Google Scholar]
  218. Serafini T., Stenbeck G., Brecht A., Lottspeich F., Orci L., Rothman J. E., Wieland F. T. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature. 1991 Jan 17;349(6306):215–220. doi: 10.1038/349215a0. [DOI] [PubMed] [Google Scholar]
  219. Shapiro S. Z., Webster P. Coated vesicles from the protozoan parasite Trypanosoma brucei: purification and characterization. J Protozool. 1989 Jul-Aug;36(4):344–349. doi: 10.1111/j.1550-7408.1989.tb05524.x. [DOI] [PubMed] [Google Scholar]
  220. Sharif A. L., Smith A. G., Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem. 1989 Sep 15;184(2):353–359. doi: 10.1111/j.1432-1033.1989.tb15026.x. [DOI] [PubMed] [Google Scholar]
  221. Sharkey D. J., Kornfeld R. Developmental regulation of processing alpha-mannosidases and "intersecting" N-acetylglucosaminyltransferase in Dictyostelium discoideum. J Biol Chem. 1991 Oct 5;266(28):18477–18484. [PubMed] [Google Scholar]
  222. Sharkey D. J., Kornfeld R. Identification of an N-acetylglucosaminyltransferase in Dictyostelium discoideum that transfers an "intersecting" N-acetylglucosamine residue to high mannose oligosaccharides. J Biol Chem. 1989 Jun 25;264(18):10411–10419. [PubMed] [Google Scholar]
  223. Sheffield H. G., Bjorvat B. Ultrastructure of the cyst of Giardia lamblia. Am J Trop Med Hyg. 1977 Jan;26(1):23–30. doi: 10.4269/ajtmh.1977.26.23. [DOI] [PubMed] [Google Scholar]
  224. Shih S. J., Nelson D. L. Multiple families of proteins in the secretory granules of Paramecium tetraurelia: immunological characterization and immunocytochemical localization of trichocyst proteins. J Cell Sci. 1991 Sep;100(Pt 1):85–97. doi: 10.1242/jcs.100.1.85. [DOI] [PubMed] [Google Scholar]
  225. Shih S. J., Nelson D. L. Proteolytic processing of secretory proteins in Paramecium: immunological and biochemical characterization of the precursors of trichocyst matrix proteins. J Cell Sci. 1992 Oct;103(Pt 2):349–361. doi: 10.1242/jcs.103.2.349. [DOI] [PubMed] [Google Scholar]
  226. Shimoni Y., Segal G., Zhu X. Z., Galili G. Nucleotide sequence of a wheat cDNA encoding protein disulfide isomerase. Plant Physiol. 1995 Jan;107(1):281–281. doi: 10.1104/pp.107.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Shimoni Y., Zhu X. Z., Levanony H., Segal G., Galili G. Purification, characterization, and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol. 1995 May;108(1):327–335. doi: 10.1104/pp.108.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Simon S. Translocation of proteins across the endoplasmic reticulum. Curr Opin Cell Biol. 1993 Aug;5(4):581–588. doi: 10.1016/0955-0674(93)90126-B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Singer S. J. It's important to concentrate. Trends Cell Biol. 1995 Jan;5(1):14–15. doi: 10.1016/s0962-8924(00)88927-8. [DOI] [PubMed] [Google Scholar]
  230. Singer S. J., Oster G. F. The bilayer couple hypothesis. Trends Cell Biol. 1992 Mar;2(3):69–71. doi: 10.1016/0962-8924(92)90060-z. [DOI] [PubMed] [Google Scholar]
  231. Stamnes M. A., Rothman J. E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell. 1993 Jun 4;73(5):999–1005. doi: 10.1016/0092-8674(93)90277-w. [DOI] [PubMed] [Google Scholar]
  232. Subramanian S. V., Wyroba E., Andersen A. P., Satir B. H. Cloning and sequencing of parafusin, a calcium-dependent exocytosis-related phosphoglycoprotein. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9832–9836. doi: 10.1073/pnas.91.21.9832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Sulli C., Schwartzbach S. D. The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem. 1995 Jun 2;270(22):13084–13090. doi: 10.1074/jbc.270.22.13084. [DOI] [PubMed] [Google Scholar]
  234. Swanson P. M., Carter C. E., Hager C., Kim W. J., Obermeier S., Oeltmann T. N. Identification and characterization of an alpha-mannosidase from Trypanosoma cruzi. Glycobiology. 1992 Dec;2(6):563–569. doi: 10.1093/glycob/2.6.563. [DOI] [PubMed] [Google Scholar]
  235. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  236. Sönnichsen B., Füllekrug J., Nguyen Van P., Diekmann W., Robinson D. G., Mieskes G. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci. 1994 Oct;107(Pt 10):2705–2717. doi: 10.1242/jcs.107.10.2705. [DOI] [PubMed] [Google Scholar]
  237. Südhof T. C., De Camilli P., Niemann H., Jahn R. Membrane fusion machinery: insights from synaptic proteins. Cell. 1993 Oct 8;75(1):1–4. [PubMed] [Google Scholar]
  238. Takizawa P. A., Malhotra V. Coatomers and SNAREs in promoting membrane traffic. Cell. 1993 Nov 19;75(4):593–596. doi: 10.1016/0092-8674(93)90477-8. [DOI] [PubMed] [Google Scholar]
  239. Taniguchi T., Mizuochi T., Banno Y., Nozawa Y., Kobata A. Carbohydrates of lysosomal enzymes secreted by Tetrahymena pyriformis. J Biol Chem. 1985 Nov 15;260(26):13941–13946. [PubMed] [Google Scholar]
  240. Taylor T. C., Kahn R. A., Melançon P. Two distinct members of the ADP-ribosylation factor family of GTP-binding proteins regulate cell-free intra-Golgi transport. Cell. 1992 Jul 10;70(1):69–79. doi: 10.1016/0092-8674(92)90534-j. [DOI] [PubMed] [Google Scholar]
  241. Terryn N., Van Montagu M., Inzé D. GTP-binding proteins in plants. Plant Mol Biol. 1993 Apr;22(1):143–152. doi: 10.1007/BF00039002. [DOI] [PubMed] [Google Scholar]
  242. Tiedtke A., Rasmussen L. Constitutive secretion of acid hydrolases in Tetrahymena thermophila. J Protozool. 1989 Jul-Aug;36(4):378–382. doi: 10.1111/j.1550-7408.1989.tb05530.x. [DOI] [PubMed] [Google Scholar]
  243. Tindall S. H., DeVito L. D., Nelson D. L. Biochemical characterization of the proteins of Paramecium secretory granules. J Cell Sci. 1989 Mar;92(Pt 3):441–447. doi: 10.1242/jcs.92.3.441. [DOI] [PubMed] [Google Scholar]
  244. Traub L. M., Ostrom J. A., Kornfeld S. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol. 1993 Nov;123(3):561–573. doi: 10.1083/jcb.123.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Trombetta S. E., Bosch M., Parodi A. J. Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes. Biochemistry. 1989 Oct 3;28(20):8108–8116. doi: 10.1021/bi00446a022. [DOI] [PubMed] [Google Scholar]
  246. Turkewitz A. P., Madeddu L., Kelly R. B. Maturation of dense core granules in wild type and mutant Tetrahymena thermophila. EMBO J. 1991 Aug;10(8):1979–1987. doi: 10.1002/j.1460-2075.1991.tb07727.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Turner M. J. Biochemistry of the variant surface glycoproteins of salivarian trypanosomes. Adv Parasitol. 1982;21:69–153. doi: 10.1016/s0065-308x(08)60275-4. [DOI] [PubMed] [Google Scholar]
  248. Ullrich O., Horiuchi H., Bucci C., Zerial M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature. 1994 Mar 10;368(6467):157–160. doi: 10.1038/368157a0. [DOI] [PubMed] [Google Scholar]
  249. Ungewickell E., Ungewickell H., Holstein S. E., Lindner R., Prasad K., Barouch W., Martin B., Greene L. E., Eisenberg E. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632–635. doi: 10.1038/378632a0. [DOI] [PubMed] [Google Scholar]
  250. Vallon O., Wollman F. A. Mutations Affecting O-Glycosylation in Chlamydomonas reinhardtii Cause Delayed Cell Wall Degradation and Sex-Limited Sterility. Plant Physiol. 1995 Jun;108(2):703–712. doi: 10.1104/pp.108.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Velasco A., Hendricks L., Moremen K. W., Tulsiani D. R., Touster O., Farquhar M. G. Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II. J Cell Biol. 1993 Jul;122(1):39–51. doi: 10.1083/jcb.122.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Vida T. A., Graham T. R., Emr S. D. In vitro reconstitution of intercompartmental protein transport to the yeast vacuole. J Cell Biol. 1990 Dec;111(6 Pt 2):2871–2884. doi: 10.1083/jcb.111.6.2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Warnock D. E., Lutz M. S., Blackburn W. A., Young W. W., Jr, Baenziger J. U. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2708–2712. doi: 10.1073/pnas.91.7.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Watson N., McGuire V., Alexander S. The PsB glycoprotein complex is secreted as a preassembled precursor of the spore coat in Dictyostelium discoideum. J Cell Sci. 1994 Sep;107(Pt 9):2567–2579. doi: 10.1242/jcs.107.9.2567. [DOI] [PubMed] [Google Scholar]
  255. Whiteheart S. W., Kubalek E. W. SNAPs and NSF: general members of the fusion apparatus. Trends Cell Biol. 1995 Feb;5(2):64–68. doi: 10.1016/s0962-8924(00)88948-5. [DOI] [PubMed] [Google Scholar]
  256. Wilsbach K., Payne G. S. Dynamic retention of TGN membrane proteins in Saccharomyces cerevisiae. Trends Cell Biol. 1993 Dec;3(12):426–432. doi: 10.1016/0962-8924(93)90031-u. [DOI] [PubMed] [Google Scholar]
  257. Wilson D. W., Wilcox C. A., Flynn G. C., Chen E., Kuang W. J., Henzel W. J., Block M. R., Ullrich A., Rothman J. E. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature. 1989 Jun 1;339(6223):355–359. doi: 10.1038/339355a0. [DOI] [PubMed] [Google Scholar]
  258. Wolin S. L. From the elephant to E. coli: SRP-dependent protein targeting. Cell. 1994 Jun 17;77(6):787–790. doi: 10.1016/0092-8674(94)90124-4. [DOI] [PubMed] [Google Scholar]
  259. Wyroba E., Widding Høyer A., Storgaard P., Satir B. H. Mammalian homologue of the calcium-sensitive phosphoglycoprotein, parafusin. Eur J Cell Biol. 1995 Dec;68(4):419–426. [PubMed] [Google Scholar]
  260. YUSA A. AN ELECTRON MICROSCOPE STUDY ON REGENERATION OF TRICHOCYSTS IN PARAMECIUM CAUDATUM. J Protozool. 1963 Aug;10:253–262. doi: 10.1111/j.1550-7408.1963.tb01673.x. [DOI] [PubMed] [Google Scholar]
  261. Yano Y., Miki-Noumura T. Recovery of sliding ability in arm-depleted flagellar axonemes after recombination with extracted dynein I. J Cell Sci. 1981 Apr;48:223–239. doi: 10.1242/jcs.48.1.223. [DOI] [PubMed] [Google Scholar]
  262. Zerial M., Stenmark H. Rab GTPases in vesicular transport. Curr Opin Cell Biol. 1993 Aug;5(4):613–620. doi: 10.1016/0955-0674(93)90130-i. [DOI] [PubMed] [Google Scholar]
  263. d'Enfert C., Gensse M., Gaillardin C. Fission yeast and a plant have functional homologues of the Sar1 and Sec12 proteins involved in ER to Golgi traffic in budding yeast. EMBO J. 1992 Nov;11(11):4205–4211. doi: 10.1002/j.1460-2075.1992.tb05514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. de Vries K. J., Heinrichs A. A., Cunningham E., Brunink F., Westerman J., Somerharju P. J., Cockcroft S., Wirtz K. W., Snoek G. T. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem J. 1995 Sep 1;310(Pt 2):643–649. doi: 10.1042/bj3100643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. van Meer G. Lipid traffic in animal cells. Annu Rev Cell Biol. 1989;5:247–275. doi: 10.1146/annurev.cb.05.110189.001335. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES