Skip to main content
Sarcoma logoLink to Sarcoma
. 2004 Mar;8(1):25–30. doi: 10.1080/13577140410001679220

Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines

Fariba Navid 1,2,, Blaine T Mischen 1, Lee J Helman 1
PMCID: PMC2395599  PMID: 18521390

Abstract

Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines.

Methods. Differences in adenoviral uptake in the presence and absence of depsipeptide (FR901228) were assessed using an adenoviral construct tagged with green fluorescent protein. Changes in CAR and αv integrin expression RMS in response to pretreatment with depsipeptide (FR901128) was determined using RT-PCR.

Results. Pretreatment of five of six RMS cell lines with 0.5 ng/ml of depsipeptide (FR901228) for 72 h resulted in increased viral uptake as assessed by green fluorescent protein expression. RT-PCR analysis for CAR showed that in four of these five cell lines, CAR expression was increased 2.8–8.1-fold in cells treated with depsipeptide (FR901228) as compared to control. αv integrin expression was substantially increased in the one cell line, RH5, which showed increased GFP expression in response to depsipeptide (FR901228) pretreatment but a minimal increase in CAR expression.

Conclusions. Depsipeptide (FR901228) can be used as a vehicle to enhance adenoviral transduction in a majority of RMS cells. The mechanism of increased viral uptake appears to mediate via upregulation of CAR.

Full Text

The Full Text of this article is available as a PDF (345.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abounader Roger, Lal Bachchu, Luddy Carey, Koe Gary, Davidson Beverly, Rosen Eliot M., Laterra John. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 2001 Nov 29;16(1):108–110. doi: 10.1096/fj.01-0421fje. [DOI] [PubMed] [Google Scholar]
  2. Arnberg N., Edlund K., Kidd A. H., Wadell G. Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol. 2000 Jan;74(1):42–48. [PMC free article] [PubMed] [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997 Feb 28;275(5304):1320–1323. doi: 10.1126/science.275.5304.1320. [DOI] [PubMed] [Google Scholar]
  4. Cripe T. P., Dunphy E. J., Holub A. D., Saini A., Vasi N. H., Mahller Y. Y., Collins M. H., Snyder J. D., Krasnykh V., Curiel D. T. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001 Apr 1;61(7):2953–2960. [PubMed] [Google Scholar]
  5. Dechecchi M. C., Tamanini A., Bonizzato A., Cabrini G. Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology. 2000 Mar 15;268(2):382–390. doi: 10.1006/viro.1999.0171. [DOI] [PubMed] [Google Scholar]
  6. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  7. Dion L. D., Goldsmith K. T., Tang D. C., Engler J. A., Yoshida M., Garver R. I., Jr Amplification of recombinant adenoviral transgene products occurs by inhibition of histone deacetylase. Virology. 1997 May 12;231(2):201–209. doi: 10.1006/viro.1997.8538. [DOI] [PubMed] [Google Scholar]
  8. Dunphy E. J., Redman R. A., Herweijer H., Cripe T. P. Reciprocal enhancement of gene transfer by combinatorial adenovirus transduction and plasmid DNA transfection in vitro and in vivo. Hum Gene Ther. 1999 Sep 20;10(14):2407–2417. doi: 10.1089/10430349950017059. [DOI] [PubMed] [Google Scholar]
  9. El-Badry O. M., Romanus J. A., Helman L. J., Cooper M. J., Rechler M. M., Israel M. A. Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest. 1989 Sep;84(3):829–839. doi: 10.1172/JCI114243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fasbender A., Zabner J., Chillón M., Moninger T. O., Puga A. P., Davidson B. L., Welsh M. J. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem. 1997 Mar 7;272(10):6479–6489. doi: 10.1074/jbc.272.10.6479. [DOI] [PubMed] [Google Scholar]
  11. Felix C. A., Kappel C. C., Mitsudomi T., Nau M. M., Tsokos M., Crouch G. D., Nisen P. D., Winick N. J., Helman L. J. Frequency and diversity of p53 mutations in childhood rhabdomyosarcoma. Cancer Res. 1992 Apr 15;52(8):2243–2247. [PubMed] [Google Scholar]
  12. Gaetano C., Catalano A., Palumbo R., Illi B., Orlando G., Ventoruzzo G., Serino F., Capogrossi M. C. Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. Gene Ther. 2000 Oct;7(19):1624–1630. doi: 10.1038/sj.gt.3301296. [DOI] [PubMed] [Google Scholar]
  13. Houghton J. A., Houghton P. J., Webber B. L. Growth and characterization of childhood rhabdomyosarcomas as xenografts. J Natl Cancer Inst. 1982 Mar;68(3):437–443. [PubMed] [Google Scholar]
  14. Kalebic T., Judde J. G., Velez-Yanguas M., Knutsen T., Helman L. J. Metastatic human rhabdomyosarcoma: molecular, cellular and cytogenetic analysis of a novel cellular model. Invasion Metastasis. 1996;16(2):83–96. [PubMed] [Google Scholar]
  15. Kaplan J. M., Pennington S. E., St George J. A., Woodworth L. A., Fasbender A., Marshall J., Cheng S. H., Wadsworth S. C., Gregory R. J., Smith A. E. Potentiation of gene transfer to the mouse lung by complexes of adenovirus vector and polycations improves therapeutic potential. Hum Gene Ther. 1998 Jul 1;9(10):1469–1479. doi: 10.1089/hum.1998.9.10-1469. [DOI] [PubMed] [Google Scholar]
  16. Kitazono M., Goldsmith M. E., Aikou T., Bates S., Fojo T. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res. 2001 Sep 1;61(17):6328–6330. [PubMed] [Google Scholar]
  17. Kitazono Masaki, Rao Vemulkonda Koneti, Robey Rob, Aikou Takashi, Bates Susan, Fojo Tito, Goldsmith Merrill E. Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood. 2002 Mar 15;99(6):2248–2251. doi: 10.1182/blood.v99.6.2248. [DOI] [PubMed] [Google Scholar]
  18. Lanuti M., Kouri C. E., Force S., Chang M., Amin K., Xu K., Blair I., Kaiser L., Albelda S. Use of protamine to augment adenovirus-mediated cancer gene therapy. Gene Ther. 1999 Sep;6(9):1600–1610. doi: 10.1038/sj.gt.3300987. [DOI] [PubMed] [Google Scholar]
  19. Li E., Stupack D. G., Brown S. L., Klemke R., Schlaepfer D. D., Nemerow G. R. Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem. 2000 May 12;275(19):14729–14735. doi: 10.1074/jbc.275.19.14729. [DOI] [PubMed] [Google Scholar]
  20. Li Y., Pong R. C., Bergelson J. M., Hall M. C., Sagalowsky A. I., Tseng C. P., Wang Z., Hsieh J. T. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 1999 Jan 15;59(2):325–330. [PubMed] [Google Scholar]
  21. Nakajima H., Kim Y. B., Terano H., Yoshida M., Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998 May 25;241(1):126–133. doi: 10.1006/excr.1998.4027. [DOI] [PubMed] [Google Scholar]
  22. Tang D. C., Johnston S. A., Carbone D. P. Butyrate-inducible and tumor-restricted gene expression by adenovirus vectors. Cancer Gene Ther. 1994 Mar;1(1):15–20. [PubMed] [Google Scholar]
  23. Ueda H., Manda T., Matsumoto S., Mukumoto S., Nishigaki F., Kawamura I., Shimomura K. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot (Tokyo) 1994 Mar;47(3):315–323. doi: 10.7164/antibiotics.47.315. [DOI] [PubMed] [Google Scholar]
  24. Ueda H., Nakajima H., Hori Y., Fujita T., Nishimura M., Goto T., Okuhara M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot (Tokyo) 1994 Mar;47(3):301–310. doi: 10.7164/antibiotics.47.301. [DOI] [PubMed] [Google Scholar]
  25. Ueda H., Nakajima H., Hori Y., Goto T., Okuhara M. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci Biotechnol Biochem. 1994 Sep;58(9):1579–1583. doi: 10.1271/bbb.58.1579. [DOI] [PubMed] [Google Scholar]
  26. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993 Apr 23;73(2):309–319. doi: 10.1016/0092-8674(93)90231-e. [DOI] [PubMed] [Google Scholar]

Articles from Sarcoma are provided here courtesy of Wiley

RESOURCES