Skip to main content
Bulletin of the World Health Organization logoLink to Bulletin of the World Health Organization
. 1980;58(3):505–509.

A proposal for the definition of terms related to locomotion of leukocytes and other cells*

PMCID: PMC2395922  PMID: 6968255

Abstract

There is currently much confusion of terms relating to locomotion of leukocytes and other cells. Standardized and precise use of terms is, however, indispensable for analysis of the basic mechanisms controlling such locomotion. The present proposal is intended to serve as a basis for a standardized system of reporting locomotor behaviour of leukocytes and other cells and their responses to environmental stimuli. Definitions of the terms random locomotion, directional locomotion, chemotaxis, chemokinesis, and intrinsic locomotor capacity are proposed. Examples are given to demonstrate the application of the terms in the experimental and clinical analysis of cell locomotion.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
  3. Bessis M., Burté B. Positive and negative chemotaxis as observed after the destruction of a cell by U. V. or laser microbeams. Tex Rep Biol Med. 1965 Jun;23(Suppl):204–212. [PubMed] [Google Scholar]
  4. Brown D. A., Berg H. C. Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1388–1392. doi: 10.1073/pnas.71.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gail M. H., Boone C. W. The locomotion of mouse fibroblasts in tissue culture. Biophys J. 1970 Oct;10(10):980–993. doi: 10.1016/S0006-3495(70)86347-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goetzl E. J., Austen K. F. A neutrophil-immobilizing factor derived from human leukocytes. I. Generation and partial characterization. J Exp Med. 1972 Dec 1;136(6):1564–1580. doi: 10.1084/jem.136.6.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gunn D. L. The meaning of the term "klinokinesis". Anim Behav. 1975 May;23(2):409–412. doi: 10.1016/0003-3472(75)90088-3. [DOI] [PubMed] [Google Scholar]
  8. Keller H. U., Gerber H., Hess M. W., Cottier H. Studies on the regulation of the neutrophil chemotactic response using a rapid and reliable method for measuring random migration and chemotaxis of neutrophil granulocytes. Agents Actions. 1976 Feb;6(1-3):326–339. doi: 10.1007/BF01972250. [DOI] [PubMed] [Google Scholar]
  9. Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller M. E., Oski F. A., Harris M. B. Lazy-leucocyte syndrome. A new disorder of neutrophil function. Lancet. 1971 Apr 3;1(7701):665–669. doi: 10.1016/s0140-6736(71)92679-1. [DOI] [PubMed] [Google Scholar]
  11. Miller M. E. Pathology of chemotaxis and random mobility. Semin Hematol. 1975 Jan;12(1):59–82. [PubMed] [Google Scholar]
  12. Ramsey W. S. Analysis of individual leucocyte behavior during chemotaxis.. Exp Cell Res. 1972 Jan;70(1):129–139. doi: 10.1016/0014-4827(72)90190-5. [DOI] [PubMed] [Google Scholar]
  13. Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TRINKAUS J. P. The cellular basis of Fundulus epiboly. Adhesivity of blastula and gastrula cells in culture. Dev Biol. 1963 Mar;6:513–532. doi: 10.1016/0012-1606(63)90139-8. [DOI] [PubMed] [Google Scholar]
  15. Tickle C. A., Trinkaus J. P. Changes in surface extensibility of Fundulus deep cells during early development. J Cell Sci. 1973 Nov;13(3):721–726. doi: 10.1242/jcs.13.3.721. [DOI] [PubMed] [Google Scholar]
  16. Tsang N., Macnab R., Koshland D. E., Jr Common mechanism for repellents and attractants in bacterial chemotaxis. Science. 1973 Jul 6;181(4094):60–63. doi: 10.1126/science.181.4094.60. [DOI] [PubMed] [Google Scholar]
  17. Ward P. A., Becker E. L. The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. J Exp Med. 1968 Apr 1;127(4):693–709. doi: 10.1084/jem.127.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weiss L., Glaves D. Effects of migration inhibiting factor(s) on the in vitro detachment of macrophages. J Immunol. 1975 Nov;115(5):1362–1365. [PubMed] [Google Scholar]
  19. Zigmond S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature. 1974 May 31;249(456):450–452. doi: 10.1038/249450a0. [DOI] [PubMed] [Google Scholar]

Articles from Bulletin of the World Health Organization are provided here courtesy of World Health Organization

RESOURCES