Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Feb;47(2):338–342. doi: 10.1128/aem.47.2.338-342.1984

Cystine antagonism of the antibacterial action of lactoperoxidase-thiocyanate-hydrogen peroxide on Streptococcus agalactiae.

M N Mickelson, A J Anderson
PMCID: PMC239671  PMID: 6370135

Abstract

Cystine reduction in Streptococcus agalactiae, resulting in sulfhydryl formation, may account for antagonism of the antibacterial effect of lactoperoxidase-thiocyanate-hydrogen peroxide when cystine is present in excess of the amount needed for maximum growth. Accumulation of cystine by S. agalactiae and its reduction to form sulfhydryl compounds were demonstrated. The reduction of cystine appeared to occur by a couple reaction between glutathione reductase and glutathione-disulfide transhydrogenase activity, both of which were found in the supernatant fraction from cell homogenates. NADPH-specific glutathione reductase activity was found in the pellet and supernatant fractions from cell homogenates. Two sulfhydryls were formed for each mole of NADPH used during cystine reduction. The information presented offers a plausible explanation of how cystine, when present in excess of growth needs, may be reduced to generate sulfhydryl compounds which neutralize the antibacterial effect of lactoperoxidase-thiocyanate-hydrogen peroxide on S. agalactiae.

Full text

PDF
338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson M., Pruitt K. M. Lactoperoxidase-catalyzed inactivation of hexokinase. Biochim Biophys Acta. 1981 Apr 14;658(2):238–247. doi: 10.1016/0005-2744(81)90294-1. [DOI] [PubMed] [Google Scholar]
  2. Brown R. W., Baetz A. L. Separation from whey of three growth factors for Streptococcus agalactiae. Am J Vet Res. 1976 Jan;37(1):75–78. [PubMed] [Google Scholar]
  3. Brown R. W. Compounds affecting Streptococcus agalactiae growth in milk. J Dairy Sci. 1974 Jul;57(7):797–802. doi: 10.3168/jds.S0022-0302(74)84967-2. [DOI] [PubMed] [Google Scholar]
  4. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  5. Fahey R. C., Brody S., Mikolajczyk S. D. Changes in the glutathione thiol-disulfide status of Neurospora crassa conidia during germination and aging. J Bacteriol. 1975 Jan;121(1):144–151. doi: 10.1128/jb.121.1.144-151.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B. Occurrence of glutathione in bacteria. J Bacteriol. 1978 Mar;133(3):1126–1129. doi: 10.1128/jb.133.3.1126-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Maresca B., Jacobson E., Medoff G., Kobayashi G. Cystine reductase in the dimorphic fungus Histoplasma capsulatum. J Bacteriol. 1978 Sep;135(3):987–992. doi: 10.1128/jb.135.3.987-992.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marshall V. M., Reiter B. Comparison of the antibacterial activity of the hypothiocyanite anion towards Streptococcus lactis and Escherichia coli. J Gen Microbiol. 1980 Oct;120(2):513–516. doi: 10.1099/00221287-120-2-513. [DOI] [PubMed] [Google Scholar]
  11. Mickelson M. N. Antibacterial action of lactoperoxidase-thiocyanate-hydrogen peroxide on Streptococcus agalactiae. Appl Environ Microbiol. 1979 Nov;38(5):821–826. doi: 10.1128/aem.38.5.821-826.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mickelson M. N. Effects of nutritional characteristics of Streptococcus agalactiae on inhibition of growth by lactoperoxidase-thiocyanate-hydrogen peroxide in chemically defined culture medium. Appl Environ Microbiol. 1976 Aug;32(2):238–244. doi: 10.1128/aem.32.2.238-244.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mickelson M. N. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. J Bacteriol. 1977 Nov;132(2):541–548. doi: 10.1128/jb.132.2.541-548.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moran J. W. Branched-chain amino acid transport in Streptococcus agalactiae. Appl Environ Microbiol. 1980 Jul;40(1):25–31. doi: 10.1128/aem.40.1.25-31.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROMANO A. H., NICKERSON W. J. Cystine reductase of pea seeds and yeasts. J Biol Chem. 1954 May;208(1):409–416. [PubMed] [Google Scholar]
  16. Ruiz-Herrera J., Amezcua-Ortega R., Trujillo A. Purification and properties of a disulfide reductase obtained from Achromobacter starkeyi. J Biol Chem. 1968 Aug 10;243(15):4083–4088. [PubMed] [Google Scholar]
  17. Swerdlow R. D., Green C. L., Setlow B., Setlow P. Identification of an NADH-linked disulfide reductase from Bacillus megaterium specific for disulfides containing pantethine 4',4''-diphosphate moieties. J Biol Chem. 1979 Aug 10;254(15):6835–6837. [PubMed] [Google Scholar]
  18. Thomas E. L., Aune T. M. Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun. 1978 May;20(2):456–463. doi: 10.1128/iai.20.2.456-463.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thomas E. L., Pera K. A., Smith K. W., Chwang A. K. Inhibition of Streptococcus mutans by the lactoperoxidase antimicrobial system. Infect Immun. 1983 Feb;39(2):767–778. doi: 10.1128/iai.39.2.767-778.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tietze F. Disulfide reduction in rat liver. I. Evidence for the presence of nonspecific nucleotide-dependent disulfide reductase and GSH-disulfide transhydrogenase activities in the high-speed supernatant fraction. Arch Biochem Biophys. 1970 May;138(1):177–188. doi: 10.1016/0003-9861(70)90297-3. [DOI] [PubMed] [Google Scholar]
  21. Tietze F. Disulfide reduction in rat liver. II. Chromatographic separation of nucleotide-dependent disulfide reductase and GSH-disulfide transhydrogenase activities of the high-speed supernatant fraction. Biochim Biophys Acta. 1970 Dec 16;220(3):449–462. doi: 10.1016/0005-2744(70)90276-7. [DOI] [PubMed] [Google Scholar]
  22. WILSON A. T., ROSENBLUM H. The antistreptococcal property of milk. II. The effects of anaerobiosis, reducing agents, thiamine, and other chemicals on lactenin action. J Exp Med. 1952 Jan;95(1):39–50. doi: 10.1084/jem.95.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES