Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Feb;47(2):409–415. doi: 10.1128/aem.47.2.409-415.1984

Penetration of different human pathogenic viruses into sand columns percolated with distilled water, groundwater, or wastewater.

H Dizer, A Nasser, J M Lopez
PMCID: PMC239683  PMID: 6324676

Abstract

The adsorption of several enteroviruses and rotavirus SA11 to sand from an aquifer in the Federal Republic of Germany was estimated in sand-filled columns loaded with ca. 10(7) PFU and run at a velocity of 2.5 m/day for 12 h. After either distilled water, groundwater, secondary effluent, or tertiary effluent was percolated, the sand core was slowly extruded out of the column and cut in 1-cm slices. The slices were eluted with nutrient broth, and the amount of viruses in the broth was estimated. The best adsorption was promoted by groundwater and tertiary effluent, followed by distilled water and secondary effluent. Similar experiments, carried out at different percolation rates, indicated that a 50-day underground stay of recharged water probably suffices to eliminate viruses in the groundwater-recharged tertiary effluent. However, when viruses and sand were incubated in the presence of the surfactants sodium dodecyl sulfate, nonyl phenol, dodigen 226, or alkylbenzylsulfonate, the adsorption of the viruses was substantially diminished. Experiments in the presence of nonyl phenol seem to indicate that hydrophobic interactions are involved in the adsorption of viruses to sand.

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida J. D., Hall T., Banatvala J. E., Totterdell B. M., Chrystie I. L. The effect of trypsin on the growth of rotavirus. J Gen Virol. 1978 Jul;40(1):213–218. doi: 10.1099/0022-1317-40-1-213. [DOI] [PubMed] [Google Scholar]
  2. Duboise S. M., Moore B. E., Sagik B. P. Poliovirus survival and movement in a sandy forest soil. Appl Environ Microbiol. 1976 Apr;31(4):536–543. doi: 10.1128/aem.31.4.536-543.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Floyd R., Johnson J. D., Sharp D. G. Inactivation by bromine of single poliovirus particles in water. Appl Environ Microbiol. 1976 Feb;31(2):298–303. doi: 10.1128/aem.31.2.298-303.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilbert R. G., Gerba C. P., Rice R. C., Bouwer H., Wallis C., Melnick J. L. Virus and bacteria removal from wastewater by land treatment. Appl Environ Microbiol. 1976 Sep;32(3):333–338. doi: 10.1128/aem.32.3.333-338.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goyal S. M., Gerba C. P. Comparative adsorption of human enteroviruses, simian rotavirus, and selected bacteriophages to soils. Appl Environ Microbiol. 1979 Aug;38(2):241–247. doi: 10.1128/aem.38.2.241-247.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Halvorson H. O., Ziegler N. R. Application of Statistics to Problems in Bacteriology: I. A Means of Determining Bacterial Population by the Dilution Method. J Bacteriol. 1933 Feb;25(2):101–121. doi: 10.1128/jb.25.2.101-121.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lance J. C., Gerba C. P., Melnick J. L. Virus movement in soil columns flooded with secondary sewage effluent. Appl Environ Microbiol. 1976 Oct;32(4):520–526. doi: 10.1128/aem.32.4.520-526.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Landry E. F., Vaughn J. M., Thomas M. Z., Beckwith C. A. Adsorption of enteroviruses to soil cores and their subsequent elution by artificial rainwater. Appl Environ Microbiol. 1979 Oct;38(4):680–687. doi: 10.1128/aem.38.4.680-687.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schaub S. A., Sorber C. A. Virus and bacteria removal from wastewater by rapid infiltration through soil. Appl Environ Microbiol. 1977 Mar;33(3):609–619. doi: 10.1128/aem.33.3.609-619.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sobsey M. D., Dean C. H., Knuckles M. E., Wagner R. A. Interactions and survival of enteric viruses in soil materials. Appl Environ Microbiol. 1980 Jul;40(1):92–101. doi: 10.1128/aem.40.1.92-101.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vaughn J. M., Landry E. F., Baranosky L. J., Beckwith C. A., Dahl M. C., Delihas N. C. Survey of human virus occurrence in wastewater-recharged groundwater on Long Island. Appl Environ Microbiol. 1978 Jul;36(1):47–51. doi: 10.1128/aem.36.1.47-51.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vaughn J. M., Landry E. F., Beckwith C. A., Thomas M. Z. Virus removal during groundwater recharge: effects of infiltration rate on adsorption of poliovirus to soil. Appl Environ Microbiol. 1981 Jan;41(1):139–147. doi: 10.1128/aem.41.1.139-147.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vaughn J. M., Landry E. F., Thomas M. Z. Entrainment of viruses from septic tank leach fields through a shallow, sandy soil aquifer. Appl Environ Microbiol. 1983 May;45(5):1474–1480. doi: 10.1128/aem.45.5.1474-1480.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yeager J. G., O'Brien R. T. Enterovirus inactivation in soil. Appl Environ Microbiol. 1979 Oct;38(4):694–701. doi: 10.1128/aem.38.4.694-701.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES