Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Mar;47(3):560–565. doi: 10.1128/aem.47.3.560-565.1984

Production and Characterization of Cellulase and β-Glucosidase from a Mutant of Alternaria alternata

Basil J Macris 1
PMCID: PMC239720  PMID: 16346494

Abstract

A mutant of Alternaria alternata excreted enhanced levels of carboxymethylcellulase and particularly β-glucosidase when grown in cellulose liquid media. Both enzymes were purified two- to four-fold by ammonium sulfate precipitation and gel filtration, and the kinetic data showed Km values of 16.64 mg/ml of culture fluid for carboxymethylcellulase and 0.14 mM p-nitrophenyl-β-d-glucoside and 0.81 mM cellobiose for β-glucosidase at pH 5. Carboxymethylcellulase and extracellular β-glucosidase functioned optimally at pH 5 to 6 and 4.5 to 5 and at temperatures of 55 to 60 and 70 to 75°C, respectively. Both temperature optima and thermostability of β-glucosidase were among the highest ever reported for the same enzyme excreted from cellulase and β-glucosidase hyperproducing microorganisms.

Full text

PDF
560

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bissett F., Sternberg D. Immobilization of Aspergillus beta-glucosidase on chitosan. Appl Environ Microbiol. 1978 Apr;35(4):750–755. doi: 10.1128/aem.35.4.750-755.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boretti G., Garofano L., Montecucchi P., Spalla C. Cellulase production with Penicillium iriense (n.sp.). Arch Mikrobiol. 1973 Aug 21;92(3):189–200. doi: 10.1007/BF00411199. [DOI] [PubMed] [Google Scholar]
  4. Han Y. W., Callihan C. D. Cellulose fermentation: effect of substrate pretreatment on microbial growth. Appl Microbiol. 1974 Jan;27(1):159–165. doi: 10.1128/am.27.1.159-165.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Han Y. W., Srinivasan V. R. Purification and characterization of beta-glucosidase of Alcaligenes faecalis. J Bacteriol. 1969 Dec;100(3):1355–1363. doi: 10.1128/jb.100.3.1355-1363.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herr D. Secretion of cellulase and beta-glucosidase by Trichoderma viride ITCC-1433 in submerged culture on different substrates. Biotechnol Bioeng. 1979 Aug;21(8):1361–1371. doi: 10.1002/bit.260210805. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Li L. H., Flora R. M., King K. W. Individual roles of cellulase components derived from Trichoderma viride. Arch Biochem Biophys. 1965 Aug;111(2):439–447. doi: 10.1016/0003-9861(65)90207-9. [DOI] [PubMed] [Google Scholar]
  9. Lusis A. J., Becker R. R. The beta-glucosidase system of the thermophilic fungus Chaetomium thermophile var. coprophile n. var. Biochim Biophys Acta. 1973 Nov 2;329(1):5–16. doi: 10.1016/0304-4165(73)90003-2. [DOI] [PubMed] [Google Scholar]
  10. Macris B. J. Production of a Thermostable beta-d-Galactosidase by Alternaria alternata Grown in Whey. Appl Environ Microbiol. 1982 Nov;44(5):1035–1038. doi: 10.1128/aem.44.5.1035-1038.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mandels M., Weber J., Parizek R. Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol. 1971 Jan;21(1):152–154. doi: 10.1128/am.21.1.152-154.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McHale A., Coughlan M. P. Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Lett. 1980 Aug 11;117(1):319–322. doi: 10.1016/0014-5793(80)80971-9. [DOI] [PubMed] [Google Scholar]
  13. Sadana J. C., Shewale J. G., Deshpande M. V. Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii. Appl Environ Microbiol. 1979 Oct;38(4):730–733. doi: 10.1128/aem.38.4.730-733.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shewale J. G., Sadana J. C. Cellulase and beta-glucosidase production by a basidiomycete species. Can J Microbiol. 1978 Oct;24(10):1204–1216. doi: 10.1139/m78-195. [DOI] [PubMed] [Google Scholar]
  15. Sternberg D. Beta-glucosidase of Trichoderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microbiol. 1976 May;31(5):648–654. doi: 10.1128/aem.31.5.648-654.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sternberg D. Production of cellulase by Trichoderma. Biotechnol Bioeng Symp. 1976;(6):35–53. [PubMed] [Google Scholar]
  17. Sternberg D., Vijayakumar P., Reese E. T. beta-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol. 1977 Feb;23(2):139–147. doi: 10.1139/m77-020. [DOI] [PubMed] [Google Scholar]
  18. Streamer M., Eriksson K. E., Pettersson B. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cullulose. Functional characterization of five endo-1,4-beta-glucanases and one exo-1,4-beta-glucanase. Eur J Biochem. 1975 Nov 15;59(2):607–613. doi: 10.1111/j.1432-1033.1975.tb02489.x. [DOI] [PubMed] [Google Scholar]
  19. Wood T. M. The cellulase of Fusarium solani. Purification and specificity of the -(1-4)-glucanase and the -D-glucosidase components. Biochem J. 1971 Feb;121(3):353–362. doi: 10.1042/bj1210353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES