Abstract
The bacterial protein content and protozoal protein content of unfractionated samples from the liquid-small particle phase of the rumen were determined on the basis of direct microscopic measurement of bacteria numbers and protozoa numbers and cell volumes. Standard values of 8.7 X 10(-11) mg of protein per bacterial cell and 5.9 X 10(-11) mg/micron 3 of protozoa cell volume, obtained from analysis of isolated cells, were used to convert the microscopic measurements to an estimate of the protein content of the rumen sample. When the correlation between bacterial and protozoal protein levels was examined within groups of animals, a highly significant negative correlation between these two parameters was found (P less than 0.001). The variation among animals for total (bacterial plus protozoal) microbial protein was smaller than the variation among animals for bacterial or protozoal protein alone. There was also a highly significant positive correlation (P less than 0.001) between protozoal protein level and total microbial protein level. The variation found among animals in total microbial protein level could be reduced by using a regression equation determined for bacterial versus protozoal protein to correct for the different population dynamics of the two groups.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABOUAKKADA A. R., EL-SHAZLY K. EFFECT OF ABSENCE OF CILIATE PROTOZOA FROM THE RUMEN ON MICROBIAL ACTIVITY AND GROWTH OF LAMBS. Appl Microbiol. 1964 Jul;12:384–390. [PMC free article] [PubMed] [Google Scholar]
- Abe M., Iriki T., Tobe N., Shibui H. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl Environ Microbiol. 1981 Mar;41(3):758–765. doi: 10.1128/aem.41.3.758-765.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abe M., Shibui H., Iriki T., Kumeno F. Relation between diet and protozoal population in the rumen. Br J Nutr. 1973 Mar;29(2):197–202. doi: 10.1079/bjn19730094. [DOI] [PubMed] [Google Scholar]
- Bird S. H., Hill M. K., Leng R. A. The effects of defaunation of the rumen on the growth of lambs on low-protein-high-energy diets. Br J Nutr. 1979 Jul;42(1):81–87. doi: 10.1079/bjn19790091. [DOI] [PubMed] [Google Scholar]
- Bird S. H., Leng R. A. The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br J Nutr. 1978 Jul;40(1):163–167. doi: 10.1079/bjn19780108. [DOI] [PubMed] [Google Scholar]
- Borhami B. E., el-Shazly K., Abou Akkada A. R., Ahmed I. A. Effect of early establishment of ciliate protozoa in the rumen on microbial activity and growth of early weaned buffalo calves. J Dairy Sci. 1967 Oct;50(10):1654–1660. doi: 10.3168/jds.S0022-0302(67)87688-4. [DOI] [PubMed] [Google Scholar]
- Chamberlain D. G., Thomas P. C. The effects of urea and artificial saliva on rumen bacterial protein synthesis in sheep receiving a high-cereal diet. J Sci Food Agric. 1980 May;31(5):432–438. doi: 10.1002/jsfa.2740310503. [DOI] [PubMed] [Google Scholar]
- Clarke R. T., Ulyatt M. J., John A. Variation in Numbers and Mass of Ciliate Protozoa in the Rumens of Sheep Fed Chaffed Alfalfa (Medicago sativa). Appl Environ Microbiol. 1982 May;43(5):1201–1204. doi: 10.1128/aem.43.5.1201-1204.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EADIE J. M., HOBSON P. N. Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature. 1962 Feb 3;193:503–505. doi: 10.1038/193503a0. [DOI] [PubMed] [Google Scholar]
- GUTIERREZ J. Experiments on the culture and physiology of holotriches from the bovine rumen. Biochem J. 1955 Jul;60(3):516–522. doi: 10.1042/bj0600516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hungate R. E., Reichl J., Prins R. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool. Appl Microbiol. 1971 Dec;22(6):1104–1113. doi: 10.1128/am.22.6.1104-1113.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leedle J. A., Bryant M. P., Hespell R. B. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high-forage diets. Appl Environ Microbiol. 1982 Aug;44(2):402–412. doi: 10.1128/aem.44.2.402-412.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAH R. A. FACTORS INFLUENCING THE IN VITRO CULTURE OF THE RUMEN CILIATE OPHRYOSCOLEX PURKYNEI STEIN. J Protozool. 1964 Nov;11:546–552. doi: 10.1111/j.1550-7408.1964.tb01796.x. [DOI] [PubMed] [Google Scholar]
- Mackie R. I., Gilchrist F. M. Changes in Lactate-Producing and Lactate-Utilizing Bacteria in Relation to pH in the Rumen of Sheep During Stepwise Adaptation to a High-Concentrate Diet. Appl Environ Microbiol. 1979 Sep;38(3):422–430. doi: 10.1128/aem.38.3.422-430.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh U. B., Verma D. N., Varma A., Ranjhan S. K. The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves. Br J Nutr. 1977 Nov;38(3):335–340. doi: 10.1079/bjn19770098. [DOI] [PubMed] [Google Scholar]
- Teather R. M., Erfle J. D., Boila R. J., Sauer F. D. Effect of dietary nitrogen on the rumen microbial population in lactating dairy cattle. J Appl Bacteriol. 1980 Oct;49(2):231–238. doi: 10.1111/j.1365-2672.1980.tb05121.x. [DOI] [PubMed] [Google Scholar]
- WARNER A. C. Some factors influencing the rumen microbial population. J Gen Microbiol. 1962 Apr;28:129–146. doi: 10.1099/00221287-28-1-129. [DOI] [PubMed] [Google Scholar]
- Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]
- Weller R. A., Pilgrim A. F. Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. Br J Nutr. 1974 Sep;32(2):341–351. doi: 10.1079/bjn19740087. [DOI] [PubMed] [Google Scholar]