Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Apr;47(4):597–600. doi: 10.1128/aem.47.4.597-600.1984

Degradation of the γ-Carboxyl-Containing Diarylpropane Lignin Model Compound 3-(4′-Ethoxy-3′-Methoxyphenyl)-2-(4″-Methoxyphenyl)Propionic Acid by the Basidiomycete Phanerochaete chrysosporium

Michael H Gold 1,*, Akio Enoki 1,, Meredith A Morgan 1, Mary B Mayfield 1, Hiromi Tanaka 1
PMCID: PMC239732  PMID: 16346499

Abstract

The white-rot basidiomycete Phanerochaete chrysosporium metabolized 3-(4′-ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)propionic acid (V) in low-nitrogen, stationary cultures, conditions under which ligninolytic activity is expressed. The ability of several fungal mutant strains to degrade V reflected their ability to degrade [14C]lignin to 14CO2. 1-(4′-Ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)-2- hydroxyethane (VII), anisyl alcohol, and 4-ethoxy-3-methoxybenzyl alcohol were isolated as metabolic products, indicating an initial oxidative decarboxylation of V, followed by α, β cleavage of the intermediate (VII). Exogenously added VII was rapidly converted to anisyl alcohol and 4-ethoxy-3-methoxybenzyl alcohol. When the degradation of V was carried out under 18O2, 18O was incorporated into the β position of the diarylethane product (VII), indicating that the reaction is oxygenative.

Full text

PDF
597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buswell J. A., Ander P., Pettersson B., Eriksson K. E. Oxidative decarboxylation of vanillic acid by Sporotrichum pulverulentum. FEBS Lett. 1979 Jul 1;103(1):98–101. doi: 10.1016/0014-5793(79)81258-2. [DOI] [PubMed] [Google Scholar]
  2. Crawford R. L., Robinson L. E., Foster R. D. Polyguaiacol: a useful model polymer for lignin biodegradation research. Appl Environ Microbiol. 1981 May;41(5):1112–1116. doi: 10.1128/aem.41.5.1112-1116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gold M. H., Cheng T. M. Induction of colonial growth and replica plating of the white rot basidiomycete Phanaerochaete chrysosporium. Appl Environ Microbiol. 1978 Jun;35(6):1223–1225. doi: 10.1128/aem.35.6.1223-1225.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ishimaru A., Yamazaki I. Hydroperoxide-dependent hydroxylation involving "H2O2-reducible hemoprotein" in microsomes of pea seeds. A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase. J Biol Chem. 1977 Sep 10;252(17):6118–6124. [PubMed] [Google Scholar]
  5. Nakajima R., Yamazaki I. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J Biol Chem. 1979 Feb 10;254(3):872–878. [PubMed] [Google Scholar]
  6. Tien M., Kirk T. K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983 Aug 12;221(4611):661–663. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  7. Weinstein D. A., Krisnangkura K., Mayfield M. B., Gold M. H. Metabolism of Radiolabeled beta-Guaiacyl Ether-Linked Lignin Dimeric Compounds by Phanerochaete chrysosporium. Appl Environ Microbiol. 1980 Mar;39(3):535–540. doi: 10.1128/aem.39.3.535-540.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Zemper E. D., Black S. H. Morphology of freeze-etched Treponema refringens (Nichols). Arch Microbiol. 1978 Jun 26;117(3):227–238. doi: 10.1007/BF00738540. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES